Citation: | Tongzhu Jin, Zhen Ye, Ruonan Fang, Yue Li, Wei Su, Qianqian Wang, Tianyu Li, Hongli Shan, Yanjie Lu, Haihai Liang. Notum protects against myocardial infarction-induced heart dysfunction by alleviating cardiac fibrosis[J]. Frigid Zone Medicine, 2024, 4(1): 41-50. doi: 10.2478/fzm-2024-0005 |
[1] |
Heymans S, Gonzalez A, Pizard A, et al. Searching for new mechanisms of myocardial fibrosis with diagnostic and/or therapeutic potential. Eur J Heart Fail, 2015; 17(8): 764-771. doi: 10.1002/ejhf.312
|
[2] |
Claeys M J, Rajagopalan S, Nawrot T S, et al. Climate and environmental triggers of acute myocardial infarction. Eur Heart J, 2017; 38(13): 955-960.
|
[3] |
Creemers E E, Pinto Y M. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res, 2011; 89(2): 265-272. doi: 10.1093/cvr/cvq308
|
[4] |
de Boer R A, De Keulenaer G, Bauersachs J, et al. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail, 2019; 21(3): 272-285. doi: 10.1002/ejhf.1406
|
[5] |
Shih Y C, Chen C L, Zhang Y, et al. Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circ Res, 2018; 122(2): 1052-1068. doi: 10.1161/CIRCRESAHA.117.312130
|
[6] |
Driesen R B, Nagaraju C K, Abi-Char J, et al. Reversible and irreversible differentiation of cardiac fibroblasts. Cardiovasc Res, 2014; 101(3): 411-22. doi: 10.1093/cvr/cvt338
|
[7] |
Yu J, Seldin M M, Fu K, et al. Topological arrangement of cardiac fibroblasts regulates cellular plasticity. Circ Res, 2018; 123(1): 73-85. doi: 10.1161/CIRCRESAHA.118.312589
|
[8] |
Travers JG, Kamal FA, Robbins J, et al. Cardiac fibrosis: the fibroblast awakens. Circ Res, 2016; 118(6): 1021-1040. doi: 10.1161/CIRCRESAHA.115.306565
|
[9] |
Kong P, Christia P, Frangogiannis N G. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci, 2014; 71(4): 549-574. doi: 10.1007/s00018-013-1349-6
|
[10] |
Bernaba B N, Chan J B, Lai C K et al. Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol, 2010; 19(5): 308-311. doi: 10.1016/j.carpath.2009.07.004
|
[11] |
Wu H, Tang L X, Wang X M, et al. Porcupine inhibitor CGX1321 alleviates heart failure with preserved ejection fraction in mice by blocking WNT signaling. Acta Pharmacol Sin, 2023; 44(6): 1149-1160. doi: 10.1038/s41401-022-01025-y
|
[12] |
Qian L, Hong J, Zhang Y, et al. Downregulation of S100A4 Alleviates Cardiac Fibrosis via Wnt/β-Catenin Pathway in Mice. Cell Physiol Biochem, 2018; 46(6): 2551-2560. doi: 10.1159/000489683
|
[13] |
Weber K T, Sun Y, Bhattacharya S K, et al. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol, 2013; 10(1): 15-26. doi: 10.1038/nrcardio.2012.158
|
[14] |
Frangogiannis N G. Regulation of the inflammatory response in cardiac repair. Circ Res, 2012; 110(1): 159-173. doi: 10.1161/CIRCRESAHA.111.243162
|
[15] |
Pentinmikko N, Iqbal S, Mana M, et al. Notum produced by Paneth cells attenuates regeneration of aged intestinal epithelium. Nature, 2019; 571(7765): 398-402. doi: 10.1038/s41586-019-1383-0
|
[16] |
Blyszczuk P, Berthonneche C, Behnke S, et al. Nitric oxide synthase 2 is required for conversion of pro-fibrogenic inflammatory CD133(+) progenitors into F4/80(+) macrophages in experimental autoimmune myocarditis. Cardiovasc Res, 2013; 97(2): 219-229. doi: 10.1093/cvr/cvs317
|
[17] |
Porter K E, Turner N A. Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther, 2009; 123(2): 255-278. doi: 10.1016/j.pharmthera.2009.05.002
|
[18] |
Yang D, Fu W, Li L, et al. Therapeutic effect of a novel Wnt pathway inhibitor on cardiac regeneration after myocardial infarction. Clin Sci (Lond), 2017; 131(24): 2919-2932. doi: 10.1042/CS20171256
|
[19] |
Tao H, Yang J J, Shi K H, et al. Wnt signaling pathway in cardiac fibrosis: New insights and directions. Metabolism, 2016; 65(2): 30-40. doi: 10.1016/j.metabol.2015.10.013
|
[20] |
Dzialo E, Rudnik M, Koning R I, et al. WNT3a and WNT5a transported by exosomes activate WNT signaling pathways in human cardiac fibroblasts. Int J Mol Sci, 2019; 20(6): 1436. doi: 10.3390/ijms20061436
|
[21] |
Duan J, Gherghe C, Liu D, et al. Wnt1/betacatenin injury response activates the epicardium and cardiac fibroblasts to promote cardiac repair. EMBO J, 2012; 31(2): 429-442. doi: 10.1038/emboj.2011.418
|
[22] |
Xiang F L, Fang M, Yutzey K E. Loss of beta-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat Commun, 2017; 8(1): 712. doi: 10.1038/s41467-017-00840-w
|
[23] |
Miao J, Liu J, Niu J, et al. Wnt/beta-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell, 2019; 18(5): e13004. doi: 10.1111/acel.13004
|
[24] |
Jeong M H, Kim H J, Pyun J H, et al. Cdon deficiency causes cardiac remodeling through hyperactivation of WNT/beta-catenin signaling. Proc Natl Acad Sci U S A, 2017(8); 114: E1345-E1354.
|
[25] |
Kakugawa S, Langton PF, Zebisch M, et al. Notum deacylates Wnt proteins to suppress signalling activity. Nature, 2015; 519(7542): 187-192. doi: 10.1038/nature14259
|
[26] |
Gerhardt B, Leesman L, Burra K, et al. Notum attenuates Wnt/ β-catenin signaling to promote tracheal cartilage patterning. Dev Biol, 2018; 436(1): 14-27. doi: 10.1016/j.ydbio.2018.02.002
|
[27] |
Cai B, Tan X, Zhang Y, et al. Mesenchymal stem cells and cardiomyocytes interplay to prevent myocardial hypertrophy. Stem Cells Transl Med, 2015; 4(12): 1425-1435. doi: 10.5966/sctm.2015-0032
|
[28] |
Ma H, Killaars A R, DelRio F W, et al. Myofibroblastic activation of valvular interstitial cells is modulated by spatial variations in matrix elasticity and its organization. Biomaterials, 2017; 131: 131-144. doi: 10.1016/j.biomaterials.2017.03.040
|
[29] |
Sapudom J, Rubner S, Martin S, et al. The interplay of fibronectin functionalization and TGF-beta1 presence on fibroblast proliferation, differentiation and migration in 3D matrices. Biomater Sci, 2015; 3(9): 1291-301. doi: 10.1039/C5BM00140D
|
[30] |
Nagaraju C K, Robinson E L, Abdesselem M, et al. Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. J Am Coll Cardiol, 2019; 73(18): 2267-2282. doi: 10.1016/j.jacc.2019.02.049
|
[31] |
Voss A K, Krebs D L, Thomas T. C3G regulates the size of the cerebral cortex neural precursor population. EMBO J, 2006; 25(15): 3652-3663. doi: 10.1038/sj.emboj.7601234
|
[32] |
Detienne G, De Haes W, Mergan L, et al. Beyond ROS clearance: Peroxiredoxins in stress signaling and aging. Ageing Res Rev, 2018; 44: 33-48. doi: 10.1016/j.arr.2018.03.005
|
[33] |
Gourdie R G, Dimmeler S, Kohl P. Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov, 2016; 15(9): 620-638. doi: 10.1038/nrd.2016.89
|
[34] |
Kologrivova I, Shtatolkina M, Suslova T, et al. Cells of the immune system in cardiac remodeling: main players in resolution of inflammation and repair after myocardial infarction. Front Immunol, 2021; 12: 664457. doi: 10.3389/fimmu.2021.664457
|