Citation: | Yimeng Zhang, E. V Kazakova, Huijuan Chai, Ping Zhou. Research progress on the role of cold-sensitive channel TRPM8 in controlling low temperature-induced bone metabolic imbalance[J]. Frigid Zone Medicine, 2023, 3(4): 202-208. doi: 10.2478/fzm-2023-0027 |
[1] |
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res, 2022; 10(1): 48. doi: 10.1038/s41413-022-00219-8
|
[2] |
Wang L, You X, Zhang L, et al. Mechanical regulation of bone remodeling. Bone Res, 2022; 10(1): 16. doi: 10.1038/s41413-022-00190-4
|
[3] |
Zhao Q, Guo Y, Ye T, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study. Lancet Planet Health, 2021; 5(7): e415-e425. doi: 10.1016/S2542-5196(21)00081-4
|
[4] |
Chen R, Yin P, Wang L, et al. Association between ambient temperature and mortality risk and burden: time series study in 272 main Chinese cities. BMJ, 2018; 363: k4306.
|
[5] |
Ebi K L, Capon A, Berry P, et al. Hot weather and heat extremes: health risks. Lancet, 2021; 398(10301): 698-708. doi: 10.1016/S0140-6736(21)01208-3
|
[6] |
Romanello M, McGushin A, Di Napoli C, et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet, 2021; 398(10311): 1619-1662. doi: 10.1016/S0140-6736(21)01787-6
|
[7] |
Dahl C, Madsen C, Omsland T K, et al. The Association of Cold Ambient Temperature With Fracture Risk and Mortality: National Data From Norway-A Norwegian Epidemiologic Osteoporosis Studies (NOREPOS) Study. J Bone Miner Res, 2022; 37(8): 1527-1536. doi: 10.1002/jbmr.4628
|
[8] |
Nishimura H, Nawa N, Ogawa T, et al. Association of ambient temperature and sun exposure with hip fractures in Japan: a time-series analysis using nationwide inpatient database. Sci Total Environ, 2022; 807(Pt 1): 150774.
|
[9] |
Johnson N A, Stirling E, Alexander M, et al. The relationship between temperature and hip and wrist fracture incidence. Ann R Coll Surg Engl, 2020; 102(5): 348-354. doi: 10.1308/rcsann.2020.0030
|
[10] |
Johansen A, Grose C, Havelock W. Hip fractures in the winter—using the National hip Fracture Database to examine seasonal variation in incidence and mortality. Injury, 2020; 51(4): 1011-1014. doi: 10.1016/j.injury.2020.02.088
|
[11] |
Koizia L J, Dani M, Brown H, et al. Does the weather contribute to admissions of neck of femur fractures? GeriatrOrthop Surg Rehabil, 2021; 12: 2151459320987702.
|
[12] |
Kang T, Hong J, Radnaabaatar M, et al. Effect of meteorological factors and air pollutants on fractures: a nationwide population-based ecological study. BMJ Open, 2021; 11(6): e047000. doi: 10.1136/bmjopen-2020-047000
|
[13] |
Watts N, Amann M, Arnell N, et al. The 2018 report of the Lancet Countdown on health and climate change: shaping the health of nations for centuries to come. Lancet, 2018; 392(10163): 2479-2514. doi: 10.1016/S0140-6736(18)32594-7
|
[14] |
Serrat M A. Environmental temperature impact on bone and cartilage growth. ComprPhysiol, 2014; 4(2): 621-655.
|
[15] |
Robbins A, Tom C, Cosman M N, et al. Low temperature decreases bone mass in mice: Implications for humans. Am J Phys Anthropol, 2018; 167(3): 557-568. doi: 10.1002/ajpa.23684
|
[16] |
Serrat M A, King D, Lovejoy C O. Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc Natl Acad Sci U S A, 2008; 105(49): 19348-19353. doi: 10.1073/pnas.0803319105
|
[17] |
Serrat M A, Williams R M, Farnum C E. Exercise mitigates the stunting effect of cold temperature on limb elongation in mice by increasing solute delivery to the growth plate. J Appl Physiol (1985), 2010; 109(6): 1869-1879. doi: 10.1152/japplphysiol.01022.2010
|
[18] |
Zheng J. Molecular mechanism of TRP channels. ComprPhysiol, 2013; 3(1): 221-242.
|
[19] |
Yue L, Xu H. TRP channels in health and disease at a glance. J Cell Sci, 2021; 134(13): jcs258372. doi: 10.1242/jcs.258372
|
[20] |
Cheng W, Zheng J. Distribution and Assembly of TRP Ion Channels. Adv Exp Med Biol, 2021; 1349: 111-138.
|
[21] |
Naziroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol, 2017; 8: 1040. doi: 10.3389/fphys.2017.01040
|
[22] |
Vay L, Gu C, McNaughton P A. The thermo-TRP ion channel family: properties and therapeutic implications. Br J Pharmacol, 2012; 165(4): 787-801. doi: 10.1111/j.1476-5381.2011.01601.x
|
[23] |
Gees M, Owsianik G, Nilius B, et al. TRP channels. ComprPhysiol, 2012; 2(1): 563-608.
|
[24] |
Himmel N J, Cox D N. Sensing the cold: TRP channels in thermal nociception. Channels (Austin), 2017; 11(5): 370-372. doi: 10.1080/19336950.2017.1336401
|
[25] |
Lolignier S, Gkika D, Andersson D, et al. New Insight in Cold Pain: Role of Ion Channels, Modulation, and Clinical Perspectives. J Neurosci, 2016; 36(45): 11435-11439. doi: 10.1523/JNEUROSCI.2327-16.2016
|
[26] |
Sakaguchi R, Mori Y. Transient receptor potential (TRP) channels: Biosensors for redox environmental stimuli and cellular status. Free Radic Biol Med, 2020; 146: 36-44. doi: 10.1016/j.freeradbiomed.2019.10.415
|
[27] |
Kashio M, Tominaga M. TRP channels in thermosensation. CurrOpinNeurobiol, 2022; 75: 102591.
|
[28] |
Di Donato M, Ostacolo C, Giovannelli P, et al. Therapeutic potential of TRPM8 antagonists in prostate cancer. Sci Rep, 2021; 11(1): 23232. doi: 10.1038/s41598-021-02675-4
|
[29] |
Kaneko Y, Szallasi A. Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol, 2014; 171(10): 2474-2507. doi: 10.1111/bph.12414
|
[30] |
Liu Y, Mikrani R, He Y, et al. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol, 2020; 882: 173312. doi: 10.1016/j.ejphar.2020.173312
|
[31] |
Basbaum A I, Bautista D M, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell, 2009; 139(2): 267-284. doi: 10.1016/j.cell.2009.09.028
|
[32] |
Huang Y, Fliegert R, Guse A H, et al. A structural overview of the ion channels of the TRPM family. Cell Calcium, 2020; 85: 102111. doi: 10.1016/j.ceca.2019.102111
|
[33] |
Yin Y, Le S C, Hsu A L, et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science, 2019; 363(6430): eaav9334. doi: 10.1126/science.aav9334
|
[34] |
Dhaka A, Murray A N, Mathur J, et al. TRPM8 is required for cold sensation in mice. Neuron, 2007; 54(3): 371-378. doi: 10.1016/j.neuron.2007.02.024
|
[35] |
Weyer-Menkhoff I, Pinter A, Schlierbach H, et al. Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain, 2019; 160(12): 2699-2709. doi: 10.1097/j.pain.0000000000001660
|
[36] |
Bautista D M, Siemens J, Glazer J M, et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature, 2007; 448(7150): 204-208. doi: 10.1038/nature05910
|
[37] |
Koivisto A P, Belvisi M G, Gaudet R, et al. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov, 2022; 21(1): 41-59. doi: 10.1038/s41573-021-00268-4
|
[38] |
Liu Y, Mikrani R, He Y, et al. TRPM8 channels: A review of distribution and clinical role. Eur J Pharmacol, 2020; 882: 173312. doi: 10.1016/j.ejphar.2020.173312
|
[39] |
Henao J C, Grismaldo A, Barreto A, et al. TRPM8 Channel Promotes the Osteogenic Differentiation in Human Bone Marrow Mesenchymal Stem Cells. Front Cell Dev Biol, 2021; 9: 592946. doi: 10.3389/fcell.2021.592946
|
[40] |
Song L. Calcium and Bone Metabolism Indices. Adv Clin Chem, 2017; 82: 1-46.
|
[41] |
Reid I R, Bristow S M. Calcium and Bone. Handb Exp Pharmacol, 2020; 262: 259-280.
|
[42] |
Bristow S M, Bolland M J, Gamble G D, et al. Dietary calcium intake and change in bone mineral density in older adults: a systematic review of longitudinal cohort studies. Eur J Clin Nutr, 2022; 76(2): 196-205. doi: 10.1038/s41430-021-00957-8
|
[43] |
Fliniaux I, Germain E, Farfariello V, et al. TRPs and Ca(2+) in cell death and survival. Cell Calcium, 2018; 69: 4-18. doi: 10.1016/j.ceca.2017.07.002
|
[44] |
Lieben L, Carmeliet G. The Involvement of TRP Channels in Bone Homeostasis. Front Endocrinol (Lausanne), 2012; 3: 99.
|
[45] |
Bidaux G, Borowiec A S, Gordienko D, et al. Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold-dependent manner. Proc Natl Acad Sci U S A, 2015; 112(26): E3345-E3354.
|
[46] |
Lelis Carvalho A, Treyball A, Brooks D J, et al. TRPM8 modulates temperature regulation in a sex-dependent manner without affecting cold-induced bone loss. PLoS One, 2021; 16(6): e0231060. doi: 10.1371/journal.pone.0231060
|
[47] |
Johnson N A, Stirling E, Dias J J. The effect of mean annual temperature on the incidence of distal radial fractures. J Hand Surg Eur, 2018; 43(9): 983-987. doi: 10.1177/1753193418797893
|
[48] |
Johnson N A, Stirling E, Alexander M, et al. The relationship between temperature and hip and wrist fracture incidence. Ann R Coll Surg Engl, 2020; 102(5): 348-354. doi: 10.1308/rcsann.2020.0030
|
[49] |
Hoff M, Torvik I A, Schei B. Forearm fractures in Central Norway, 1999-2012: incidence, time trends, and seasonal variation. Arch Osteoporos, 2016; 11: 7. doi: 10.1007/s11657-016-0257-4
|
[50] |
Al-Azzani W, Adam MaliqMak D, Hodgson P, et al. Epidemic of fractures during a period of snow and ice: has anything changed 33 years on? BMJ Open, 2016; 6(9): e010582. doi: 10.1136/bmjopen-2015-010582
|
[51] |
Uchida K, Dezaki K, Yoneshiro T, et al. Involvement of thermosensitive TRP channels in energy metabolism. JPS, 2017; 67(5): 549-560.
|
[52] |
Lv J, Tang L, Zhang X, et al. Thermo-TRP channels are involved in BAT thermoregulation in cold-acclimated Brandt's voles. Comp BiochemPhysiol B Biochem Mol Biol, 2022; 263: 110794.
|
[53] |
Reimundez A, Fernandez-Pena C, Garcia G, et al. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J Neurosci, 2018; 38(15): 3643-3656. doi: 10.1523/JNEUROSCI.3002-17.2018
|
[54] |
Lee P, Brychta R J, Collins M T, et al. Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women. Osteoporos Int, 2013; 24(4): 1513-1518. doi: 10.1007/s00198-012-2110-y
|
[55] |
Bredella M A, Fazeli P K, Lecka-Czernik B, et al. IGFBP-2 is a negative predictor of cold-induced brown fat and bone mineral density in young non-obese women. Bone, 2013; 53(2): 336-339. doi: 10.1016/j.bone.2012.12.046
|
[56] |
Devlin M J. The "Skinny" on brown fat, obesity, and bone. Am J Phys Anthropol, 2015; 156 Suppl 59: 98-115.
|
[57] |
Lidell M E, Enerbäck S. Brown adipose tissue and bone. International journal of obesity supplements. 2015; 5(Suppl 1): S23-S27.
|
[58] |
Motyl K J, Bishop K A, DeMambro V E, et al. Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res, 2013; 28(9): 1885-1897. doi: 10.1002/jbmr.1943
|
[59] |
Bredella M A, Gill C M, Rosen C J, et al. Positive effects of brown adipose tissue on femoral bone structure. Bone, 2014; 58: 55-58. doi: 10.1016/j.bone.2013.10.007
|
[60] |
Du J, He Z, Xu M, et al. Brown Adipose Tissue Rescues Bone Loss Induced by Cold Exposure. Front Endocrinol (Lausanne), 2021; 12: 778019.
|
[61] |
Ponrartana S, Aggabao P C, Hu H H, et al. Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab, 2012; 97(8): 2693-2698. doi: 10.1210/jc.2012-1589
|
[62] |
Bredella M A, Fazeli P K, Freedman L M, et al. Young women with cold-activated brown adipose tissue have higher bone mineral density and lower Pref-1 than women without brown adipose tissue: a study in women with anorexia nervosa, women recovered from anorexia nervosa, and normal-weight women. J Clin Endocrinol Metab, 2012; 97(4): E584-E590. doi: 10.1210/jc.2011-2246
|
[63] |
Du J, He Z, Cui J, et al. Osteocyte Apoptosis Contributes to Cold Exposure-induced Bone Loss. Front Bioeng Biotechnol, 2021; 9: 733582. doi: 10.3389/fbioe.2021.733582
|
[64] |
Zhou R, Guo Q, Xiao Y, et al. Endocrine role of bone in the regulation of energy metabolism. Bone Res, 2021; 9(1): 25. doi: 10.1038/s41413-021-00142-4
|
[65] |
Lecka-Czernik B. Diabetes, bone and glucose-lowering agents: basic biology. Diabetologia, 2017; 60(7): 1163-1169. doi: 10.1007/s00125-017-4269-4
|
[66] |
Gupte A A, Sabek O M, Fraga D, et al. Osteocalcin protects against nonalcoholic steatohepatitis in a mouse model of metabolic syndrome. Endocrinology, 2014; 155(12): 4697-4705. doi: 10.1210/en.2014-1430
|
[67] |
Martin S A, Philbrick K A, Wong C P, et al. Thermoneutral housing attenuates premature cancellous bone loss in male C57BL/6J mice. Endocr Connect, 2019; 8(11): 1455-1467. doi: 10.1530/EC-19-0359
|
[68] |
Nguyen A D, Lee N J, Wee N K Y, et al. Uncoupling protein-1 is protective of bone mass under mild cold stress conditions. Bone, 2018; 106: 167-178. doi: 10.1016/j.bone.2015.05.037
|
[69] |
Iwaniec U T, Philbrick K A, Wong C P, et al. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss. Osteoporos Int, 2016; 27(10): 3091-3101. doi: 10.1007/s00198-016-3634-3
|
[70] |
Shi Y C, Lau J, Lin Z, et al. Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metab, 2013; 17(2): 236-248. doi: 10.1016/j.cmet.2013.01.006
|
[71] |
Wee N K Y, Nguyen A D, Enriquez R F, et al. Neuropeptide Y regulation of energy partitioning and bone mass during cold exposure. Calcif Tissue Int, 2020; 107(5): 510-523. doi: 10.1007/s00223-020-00745-9
|