Citation: | Weijie Guan, Jianxing He. Clinical characteristics, management, and prevention of coronavirus disease 2019[J]. Frigid Zone Medicine, 2023, 3(3): 134-160. doi: 10.2478/fzm-2023-0019 |
[1] |
Koh D, Sng J. Lessons from the past: perspectives on severe acute respiratory syndrome. Asia Pac J Public Health, 2010; 22(3): 132S-136S.
|
[2] |
Donnelly C A, Malik M R, Elkholy A, et al. Worldwide Reduction in MERS Cases and Deaths since 2016. Emerg Infect Dis, 2019; 25(9): 1758-1760. doi: 10.3201/eid2509.190143
|
[3] |
World Health Organization. WHO Coronavirus (COVID-19) Dashboard.
|
[4] |
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med, 2020; 382(8): 727-733. doi: 10.1056/NEJMoa2001017
|
[5] |
Zhang Y Z, Holmes E C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell, 2020; 181(2): 223-227. doi: 10.1016/j.cell.2020.03.035
|
[6] |
Passamonti F, Cattaneo C, Arcaini L, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: a retrospective, multicentre, cohort study. Lancet Haematol, 2020; 7(10): e737-e745. doi: 10.1016/S2352-3026(20)30251-9
|
[7] |
Chan J F, Yuan S, Kok K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet, 2020; 395(10223): 514-23. doi: 10.1016/S0140-6736(20)30154-9
|
[8] |
Guan W J, Ni Z Y, Hu Y, et al. Clinical characteristics of Coronavirus disease 2019 in China. N Engl J Med, 2020; 382(18): 1708-1720. doi: 10.1056/NEJMoa2002032
|
[9] |
Chan J F, Poon V K, Chan C C, et al. Low Environmental Temperature Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Golden Syrian Hamsters. Clin Infect Dis, 2021; 75: e1101-e1111.
|
[10] |
Liu M, Li Z, Liu M, et al. Association between temperature and COVID-19 transmission in 153 countries. Environ Sci Poll Res Int, 2022; 29(11): 16017-16027. doi: 10.1007/s11356-021-16666-5
|
[11] |
Tian F, Liu X, Chao Q, et al. Ambient air pollution and low temperature associated with case fatality of COVID-19: A nationwide retrospective cohort study in China. Innovation, 2021; 2(3): 100139.
|
[12] |
Carta M G, Minerba L, Demontis R, et al. The COVID-19 incidence in Italian regions correlates with low temperature, mobility and PM10 pollution but lethality only with low temperature. J Pub Health Res, 2021; 10(4): 2303.
|
[13] |
Zhu G, Zhu Y, Wang Z, et al. The association between ambient temperature and mortality of the coronavirus disease 2019 (COVID-19) in Wuhan, China: a time-series analysis. BMC Public Health, 2021; 21(1): 117. doi: 10.1186/s12889-020-10131-7
|
[14] |
Chinazzi M, Davis J T, Ajelli M, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020; 368(6489): 395-400. doi: 10.1126/science.aba9757
|
[15] |
Clapp P W, Sickbert-Bennett E E, Samet J M, et al. Evaluation of Cloth Masks and Modified Procedure Masks as Personal Protective Equipment for the Public During the COVID-19 Pandemic. JAMA Intern Med, 2021; 181(4): 463-469. doi: 10.1001/jamainternmed.2020.8168
|
[16] |
Koo J R, Cook A R, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. Lancet Infect Dis, 2020; 20(6): 678-688. doi: 10.1016/S1473-3099(20)30162-6
|
[17] |
Shi Q, Hu Y, Peng B, et al. Effective control of SARS-CoV-2 transmission in Wanzhou, China. Nat Med, 2021; 27(1): 86-93. doi: 10.1038/s41591-020-01178-5
|
[18] |
Chen S, Zhang Z, Yang J, et al. Fangcang shelter hospitals: a novel concept for responding to public health emergencies. Lancet, 2020; 395(10232): 1305-1314. doi: 10.1016/S0140-6736(20)30744-3
|
[19] |
Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science, 2020; 368(6490): 489-493. doi: 10.1126/science.abb3221
|
[20] |
Poustchi H, Darvishian M, Mohammadi Z, et al. SARS-CoV-2 antibody seroprevalence in the general population and high-risk occupational groups across 18 cities in Iran: a population-based cross-sectional study. Lancet Infect Dis, 2021; 21(4): 473-481. doi: 10.1016/S1473-3099(20)30858-6
|
[21] |
Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SERO-CoV-POP): a population-based study. Lancet, 2020; 396(10247): 313-319. doi: 10.1016/S0140-6736(20)31304-0
|
[22] |
Pallett S J C, Rayment M, Patel A, et al. Point-of-care serological assays for delayed SARS-CoV-2 case identification among healthcare workers in the UK: a prospective multicentre cohort study. Lancet Respir Med, 2020; 8(9): 885-894. doi: 10.1016/S2213-2600(20)30315-5
|
[23] |
Xu X, Sun J, Nie S, et al. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat Med, 2020; 26(8): 1193-1195. doi: 10.1038/s41591-020-0949-6
|
[24] |
Li C, Luo F, Liu C, et al. Effect of a genetically engineered interferon-alpha versus traditional interferon-alpha in the treatment of moderate-to-severe COVID-19: a randomised clinical trial. Ann Med, 2021; 53(1): 391-401. doi: 10.1080/07853890.2021.1890329
|
[25] |
Bajema K L, Wiegand R E, Cuffe K, et al. Estimated SARS-CoV-2 Seroprevalence in the US as of September 2020. JAMA Intern Med, 2021; 181(4): 450-460. doi: 10.1001/jamainternmed.2020.7976
|
[26] |
Hallal P C, Hartwig F P, Horta B L, et al. SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. Lancet Glob Health, 2020; 8(11): e1390-e1398. doi: 10.1016/S2214-109X(20)30387-9
|
[27] |
Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020; 579(7798): 270-273. doi: 10.1038/s41586-020-2012-7
|
[28] |
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020; 579(7798): 265-269. doi: 10.1038/s41586-020-2008-3
|
[29] |
McCallum M, De Marco A, Lempp FA, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell, 2021; 184(9): 2332-2347. doi: 10.1016/j.cell.2021.03.028
|
[30] |
Cerutti G, Guo Y, Zhou T, et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell host Microbe, 2021; 29: 819-833. doi: 10.1016/j.chom.2021.03.005
|
[31] |
Chi X, Yan R, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science, 2020; 369(6504): 650-655. doi: 10.1126/science.abc6952
|
[32] |
Liu L, Wang P, Nair M S, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020; 584(7821): 450-456. doi: 10.1038/s41586-020-2571-7
|
[33] |
Johnson B A, Xie X, Bailey A L, et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021; 591(7849): 293-299. doi: 10.1038/s41586-021-03237-4
|
[34] |
Zhou Z, Huang C, Zhou Z, et al. Structural insight reveals SARS-CoV-2 ORF7a as an immunomodulating factor for human CD14(+) monocytes. iScience, 2021; 24(3): 102187. doi: 10.1016/j.isci.2021.102187
|
[35] |
Golden J W, Cline C R, Zeng X, et al. Human angiotensin-converting enzyme 2 transgenic mice infected with SARS-CoV-2 develop severe and fatal respiratory disease. JCI Insight, 2020; 5(19): e142032. doi: 10.1172/jci.insight.142032
|
[36] |
Bao L, Deng W, Huang B, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020; 583(7818): 830-833. doi: 10.1038/s41586-020-2312-y
|
[37] |
Jiang R D, Liu M Q, Chen Y, et al. Pathogenesis of SARS-CoV-2 in transgenic mice expressing Human Angiotensin-Converting Enzyme 2. Cell, 2020; 182(1): 50-58. doi: 10.1016/j.cell.2020.05.027
|
[38] |
Zheng J, Wong LR, Li K, et al. COVID-19 treatments and pathogenesis including anosmia in K18-hACE2 mice. Nature, 2021; 589(7843): 603-607. doi: 10.1038/s41586-020-2943-z
|
[39] |
Dinnon K H 3rd, Leist S R, Schäfer A, et al. A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature, 2020; 586(7830): 560-566. doi: 10.1038/s41586-020-2708-8
|
[40] |
Rathnasinghe R, Strohmeier S, Amanat F, et al. Comparison of transgenic and adenovirus hACE2 mouse models for SARS-CoV-2 infection. Emerg Microbes Infect, 2020; 9(1): 2433-2445. doi: 10.1080/22221751.2020.1838955
|
[41] |
Sun J, Zhuang Z, Zheng J, et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell, 2020; 182(3): 734-743. doi: 10.1016/j.cell.2020.06.010
|
[42] |
Munster V J, Feldmann F, Williamson B N, et al. Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature, 2020; 585(7824): 268-272. doi: 10.1038/s41586-020-2324-7
|
[43] |
Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in rhesus macaques. Nat Comm, 2020; 11(1): 4400. doi: 10.1038/s41467-020-18149-6
|
[44] |
Chandrashekar A, Liu J, Martinot A J, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science, 2020; 369(6505): 812-817. doi: 10.1126/science.abc4776
|
[45] |
Feng L, Wang Q, Shan C, et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat Comm, 2020; 11(1): 4207. doi: 10.1038/s41467-020-18077-5
|
[46] |
Yu J, Tostanoski L H, Peter L, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science, 2020; 369(6505): 806-11. doi: 10.1126/science.abc6284
|
[47] |
Yuan S, Yin X, Meng X, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature, 2021; 593: 418-423. doi: 10.1038/s41586-021-03431-4
|
[48] |
Fox S E, Akmatbekov A, Harbert J, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med, 2020; 8(7): 681-686. doi: 10.1016/S2213-2600(20)30243-5
|
[49] |
Schurink B, Roos E, Radonic T, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe, 2020; 1(7): e290-e299. doi: 10.1016/S2666-5247(20)30144-0
|
[50] |
Ackermann M, Verleden S E, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med, 2020; 383(2): 120-128. doi: 10.1056/NEJMoa2015432
|
[51] |
McGonagle D, O'Donnell J S, Sharif K, et al. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. Lancet Rheumatol, 2020; 2(7): e437-e445. doi: 10.1016/S2665-9913(20)30121-1
|
[52] |
Hanley B, Naresh K N, Roufosse C, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancet Microbe, 2020; 1(6): e245-e253. doi: 10.1016/S2666-5247(20)30115-4
|
[53] |
Puelles V G, Lütgehetmann M, Lindenmeyer M T, et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med, 2020; 383(6): 590-592. doi: 10.1056/NEJMc2011400
|
[54] |
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet, 2020; 395(10235): 1517-1520. doi: 10.1016/S0140-6736(20)30920-X
|
[55] |
Feng E, Balint E, Poznanski S M, et al. Aging and interferons: impacts on inflammation and viral disease outcomes. Cells, 2021; 10(3): 708. doi: 10.3390/cells10030708
|
[56] |
Ballow M, Haga C L. Why do some people develop serious COVID-19 Disease after infection, while others only exhibit mild symptoms? J Allergy Clin Immunol Pract, 2021; 9(4): 1442-1448. doi: 10.1016/j.jaip.2021.01.012
|
[57] |
Fajgenbaum D C, June C H. Cytokine storm. N Engl J Med, 2020; 383(23): 2255-2273. doi: 10.1056/NEJMra2026131
|
[58] |
Jiang L, Tang K, Levin M, et al. COVID-19 and multisystem inflammatory syndrome in children and adolescents. Lancet Infect dis, 2020; 20(11): e276-288. doi: 10.1016/S1473-3099(20)30651-4
|
[59] |
Wölfel R, Corman V M, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020; 581(7809): 465-469. doi: 10.1038/s41586-020-2196-x
|
[60] |
He X, Lau E H Y, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med, 2020; 26(5): 672-675. doi: 10.1038/s41591-020-0869-5
|
[61] |
To K K, Tsang O T, Leung W S, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis, 2020; 20(5): 565-574. doi: 10.1016/S1473-3099(20)30196-1
|
[62] |
Guo W L, Jiang Q, Ye F, et al. Effect of throat washings on detection of 2019 Novel Coronavirus. Clin Infect Dis, 2020; 71(8): 1980-1981. doi: 10.1093/cid/ciaa416
|
[63] |
Shan D, Johnson J M, Fernandes S C, et al. N-protein presents early in blood, dried blood and saliva during asymptomatic and symptomatic SARS-CoV-2 infection. Nat Comm, 2021; 12(1): 1931. doi: 10.1038/s41467-021-22072-9
|
[64] |
Cevik M, Tate M, Lloyd O, et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe, 2021; 2(1): e13-22. doi: 10.1016/S2666-5247(20)30172-5
|
[65] |
Wang Y, Zhang L, Sang L, et al. Kinetics of viral load and antibody response in relation to COVID-19 severity. J Clin Invest, 2020; 130(10): 5235-5244. doi: 10.1172/JCI138759
|
[66] |
Hong K, Cao W, Liu Z, et al. Prolonged presence of viral nucleic acid in clinically recovered COVID-19 patients was not associated with effective infectiousness. Emerg Microbe Infect, 2020; 9(1): 2315-2321. doi: 10.1080/22221751.2020.1827983
|
[67] |
Boum Y, Fai K N, Nicolay B, et al. Performance and operational feasibility of antigen and antibody rapid diagnostic tests for COVID-19 in symptomatic and asymptomatic patients in Cameroon: a clinical, prospective, diagnostic accuracy study. Lancet Infect Dis, 2021; 21: 1089-1096. doi: 10.1016/S1473-3099(21)00132-8
|
[68] |
Long Q X, Liu B Z, Deng H J, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Natmed, 2020; 26(6): 845-848.
|
[69] |
Yu H Q, Sun B Q, Fang Z F, et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J, 2020; 56(2): 2001526. doi: 10.1183/13993003.01526-2020
|
[70] |
Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med, 2021; 13(577): eabd2223. doi: 10.1126/scitranslmed.abd2223
|
[71] |
Chen M, Qin R, Jiang M, et al. Clinical applications of detecting IgG, IgM or IgA antibody for the diagnosis of COVID-19: A meta-analysis and systematic review. Int J Infect Dis, 2021; 104: 415-422. doi: 10.1016/j.ijid.2021.01.016
|
[72] |
Niu X, Li S, Li P, et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID-19 patients. Front Immunol, 2020; 11: 582010. doi: 10.3389/fimmu.2020.582010
|
[73] |
Wilk A J, Rustagi A, Zhao N Q, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med, 2020; 26(7): 1070. doi: 10.1038/s41591-020-0944-y
|
[74] |
Bost P, Giladi A, Liu Y, et al. Host-Viral infection maps reveal signatures of severe COVID-19 Patients. Cell, 2020; 181(7): 1475-1488. doi: 10.1016/j.cell.2020.05.006
|
[75] |
Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med, 2020; 26(6): 842-844. doi: 10.1038/s41591-020-0901-9
|
[76] |
Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P. 1 strain of SARS-CoV-2. Cell, 2021; 184: 2939-2954. doi: 10.1016/j.cell.2021.03.055
|
[77] |
Emary K R W, Golubchik T, Aley P K, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet, 2021; 397(10282): 1351-1362. doi: 10.1016/S0140-6736(21)00628-0
|
[78] |
Challen R, Brooks-Pollock E, Read J M, et al. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ, 2021; 372: n579.
|
[79] |
Frampton D, Rampling T, Cross A, et al. Genomic characteristics and clinical effect of the emergent SARS-CoV-2 B.1.1.7 lineage in London, UK: a whole-genome sequencing and hospital-based cohort study. Lancet Infect Dis, 2021; 21: 1246-1256. doi: 10.1016/S1473-3099(21)00170-5
|
[80] |
Keehner J, Horton L E, Pfeffer M A, et al. SARS-CoV-2 infection after vaccination in health care workers in California. N Engl J Med, 2021; 384(18): 1774-1775. doi: 10.1056/NEJMc2101927
|
[81] |
Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape. Cell, 2021; 184(9): 2362-2371. doi: 10.1016/j.cell.2021.02.042
|
[82] |
Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 2021; 184(9): 2348-2461. doi: 10.1016/j.cell.2021.02.037
|
[83] |
Hoffmann M, Arora P, Groß R, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021; 184(9): 2384-2393. doi: 10.1016/j.cell.2021.03.036
|
[84] |
Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet, 2022; 399(10323): 437-446. doi: 10.1016/S0140-6736(22)00017-4
|
[85] |
Abu-Raddad L J, Chemaitelly H, Butt A A. Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351 Variants. BMJ Med, 2022; 12(3): 386.
|
[86] |
Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 Covid-19 Vaccine against the B.1.351 Variant. N Engl J Med, 2021; 384: 1899-1909. doi: 10.1056/NEJMoa2103055
|
[87] |
Shen X, Tang H, Pajon R, et al. Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351. N Engl J Med, 2021; 384: 2352-2354. doi: 10.1056/NEJMc2103740
|
[88] |
Supasa P, Zhou D, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 2021; 184(8): 2201-2211. doi: 10.1016/j.cell.2021.02.033
|
[89] |
Madhi S A, Baillie V, Cutland C L, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med, 2021; 384: 1885-1898. doi: 10.1056/NEJMoa2102214
|
[90] |
Moyo-Gwete T, Madzivhandila M, Makhado Z, et al. Cross-Reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y. V2 (B.1.351). N Engl J Med, 2021; 384: 2161-2163. doi: 10.1056/NEJMc2104192
|
[91] |
Wang G L, Wang Z Y, Duan L J, et al. Susceptibility of circulating SARS-CoV-2 variants to Neutralization. N Engl J Med, 2021; 384: 2354-2356. doi: 10.1056/NEJMc2103022
|
[92] |
Lustig Y, Nemet I, Kliker L, et al. Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N Engl J Med, 2021; 384: 2453-2454. doi: 10.1056/NEJMc2104036
|
[93] |
Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the Omicron (B.1.1.529) variant. N Engl J Med, 2022; 386: 1532-1546. doi: 10.1056/NEJMoa2119451
|
[94] |
Pajon R, Doria-Rose N A, Shen X, et al. SARS-CoV-2 Omicron variant neutralization after mRNA-1273 booster vaccination. N Engl J Med, 2022; 386(11): 1088-1091. doi: 10.1056/NEJMc2119912
|
[95] |
Regev-Yochay G, Gonen T, Gilboa M, , et al. Efficacy of a fourth dose of Covid-19 mRNA Vaccine against Omicron. N Engl J Med, 2022; 386: 1377-1380. doi: 10.1056/NEJMc2202542
|
[96] |
Chia W N, Zhu F, Ong S W X, et al. Dynamics of SARS-CoV-2 neutralising antibody responses and duration of immunity: a longitudinal study. Lancet Microbe, 2021; 2: e240-249. doi: 10.1016/S2666-5247(21)00025-2
|
[97] |
Hansen C H, Michlmayr D, Gubbels S M, et al. Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: a population-level observational study. Lancet, 2021; 397(10280): 1204-1212. doi: 10.1016/S0140-6736(21)00575-4
|
[98] |
Hall V J, Foulkes S, Charlett A, et al. SARS-CoV-2 infection rates of antibody-positive compared with antibody-negative health-care workers in England: a large, multicentre, prospective cohort study (SIREN). Lancet, 2021; 397(10283): 1459-1469. doi: 10.1016/S0140-6736(21)00675-9
|
[99] |
Letizia A G, Ge Y, Vangeti S, et al. SARS-CoV-2 seropositivity and subsequent infection risk in healthy young adults: a prospective cohort study. Lancet Respir Med, 2021; 9: 712-720. doi: 10.1016/S2213-2600(21)00158-2
|
[100] |
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020; 395(10223): 507-513. doi: 10.1016/S0140-6736(20)30211-7
|
[101] |
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020; 323(11): 1061-1069. doi: 10.1001/jama.2020.1585
|
[102] |
Feldstein L R, Rose E B, Horwitz S M, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med, 2020; 383(4): 334-346. doi: 10.1056/NEJMoa2021680
|
[103] |
Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis, 2020; 20(4): 425-434. doi: 10.1016/S1473-3099(20)30086-4
|
[104] |
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020; 395(10229): 1054-1062. doi: 10.1016/S0140-6736(20)30566-3
|
[105] |
Yanes-Lane M, Winters N, Fregonese F, et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: a systematic review and meta-analysis. PloS One, 2020; 15(11): e0241536. doi: 10.1371/journal.pone.0241536
|
[106] |
Long Q X, Tang X J, Shi Q L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med, 2020; 26(8): 1200-1204. doi: 10.1038/s41591-020-0965-6
|
[107] |
Yang M, Li L, Huang T, et al. SARS-CoV-2 detected on environmental fomites for both asymptomatic and symptomatic patients with COVID-19. Am J Respir Crit Care Med, 2021; 203(3): 374-378. doi: 10.1164/rccm.202006-2136LE
|
[108] |
Melis M, Littera R. Undetected infectives in the Covid-19 pandemic. Int J Infect Dis, 2021; 104: 262-268. doi: 10.1016/j.ijid.2021.01.010
|
[109] |
Davies N G, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med, 2020; 26(8): 1205-1211. doi: 10.1038/s41591-020-0962-9
|
[110] |
Ahrenfeldt L J, Otavova M, Christensen K, et al. Sex and age differences in COVID-19 mortality in Europe Res Sq, 2020; rs. 3. rs-61444.
|
[111] |
Torres Acosta M A, Singer B D. Pathogenesis of COVID-19-induced ARDS: implications for an ageing population. Eur Respir J, 2020; 56(3): 2002049. doi: 10.1183/13993003.02049-2020
|
[112] |
Koff W C, Williams M A. Covid-19 and immunity in aging populations - a new research agenda. N Engl J Med, 2020; 383(9): 804-805. doi: 10.1056/NEJMp2006761
|
[113] |
Wang X Q, Song G, Yang Z, et al. Association between ageing population, median age, life expectancy and mortality in coronavirus disease (COVID-19). Aging, 2020; 12(24): 24570-24578. doi: 10.18632/aging.104193
|
[114] |
Imam Z, Odish F, Gill I, et al. Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. J Intern Med, 2020; 288(4): 469-476. doi: 10.1111/joim.13119
|
[115] |
Guan W J, Laing W H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J, 2020; 55(5): 2000547. doi: 10.1183/13993003.00547-2020
|
[116] |
Liang W, Guan W, Chen R, et al. Cancer patients in SARS-CoV-2 fection: a nationwide analysis in China. Lancet Oncol, 2020; 21(3): 335-337. doi: 10.1016/S1470-2045(20)30096-6
|
[117] |
Guan W J, Liang W H, Shi Y, et al. Chronic respiratory diseases and the outcomes of COVID-19: a nationwide retrospective cohort study of 39, 420 Cases. J Allergy Clin Immunol Pract, 2021; 9: 2645-2655. doi: 10.1016/j.jaip.2021.02.041
|
[118] |
Bloom C I, Drake T M, Docherty A B, et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19: a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK. Lancet Respir Med, 2021; 9: 699-711. doi: 10.1016/S2213-2600(21)00013-8
|
[119] |
Calmes D, Graff S, Maes N, et al. Asthma and COPD are not risk factors for ICU stay and death in case of SARS-CoV2 Infection. J Allergy Clin Immunol Pract, 2021; 9(1): 160-169. doi: 10.1016/j.jaip.2020.09.044
|
[120] |
Skevaki C, Karsonova A, Karaulov A, et al. Asthma-associated risk for COVID-19 development. J Allergy Clin Immunol, 2020; 146(6): 1295-1301. doi: 10.1016/j.jaci.2020.09.017
|
[121] |
Song J, Zeng M, Wang H, et al. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID-19. Allergy, 2021; 76(2): 483-496. doi: 10.1111/all.14517
|
[122] |
World Health Organization. Clinical management of COVID-19: interim guidance, 27 May 2020.
|
[123] |
Wei P F. Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7). Chin Med J (Engl), 2020; 133(9): 1087-1095. doi: 10.1097/CM9.0000000000000819
|
[124] |
International Severe Acute Respiratory and emerging Infection Consortium.
|
[125] |
Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature, 2020; 583(7816): 437-40. doi: 10.1038/s41586-020-2355-0
|
[126] |
Chen R, Sang L, Jiang M, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol, 2020; 146(1): 89-100. doi: 10.1016/j.jaci.2020.05.003
|
[127] |
Shen B, Yi X, Sun Y. et al. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell, 2020; 182(1): 59-72. doi: 10.1016/j.cell.2020.05.032
|
[128] |
Ren L, Wang Y, Zhong J, et al. Dynamics of the upper respiratory tract microbiota and its association with mortality in COVID-19. Am J Respir Crit Care Med, 2021; 204(12): 1379-1390. doi: 10.1164/rccm.202103-0814OC
|
[129] |
Liang W, Liang H, Ou L, et al. Development and validation of a clinical risk score to predict the occurrence of critical illness in hospitalized patients with COVID-19. JAMA Intern Med, 2020; 180(8): 1081-9. doi: 10.1001/jamainternmed.2020.2033
|
[130] |
Alemany A, Bar C B, Ouchi D, et al. Analytical and clinical performance of the panbio COVID-19 antigen-detecting rapid diagnostic test. J Infect, 2021; 82(5): 186-230.
|
[131] |
Kitagawa Y, Orihara Y, Kawamura R, et al. Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. J Clin Virol, 2020; 129: 104446. doi: 10.1016/j.jcv.2020.104446
|
[132] |
Xing W, Liu Y, Wang H, et al. A high-throughput, multi-index isothermal amplification platform for rapid detection of 19 types of common respiratory viruses including SARS-CoV-2. Engineering, 2020; 6(10): 1130-1140. doi: 10.1016/j.eng.2020.07.015
|
[133] |
Xing W, Wang J, Zhao C, et al. A highly automated mobile laboratory for on-site molecular diagnostics in the COVID-19 pandemic. Clin Chem, 2021; 67(4): 672-683. doi: 10.1093/clinchem/hvab027
|
[134] |
Joung J, Ladha A, Saito M, et al. Detection of SARS-CoV-2 with sherlock one-pot testing. N Engl J Med, 2020; 383(15): 1492-1494. doi: 10.1056/NEJMc2026172
|
[135] |
Brendish N J, Poole S, Naidu V V, et al. Clinical impact of molecular point-of-care testing for suspected COVID-19 in hospital (COV-19POC): a prospective, interventional, non-randomised, controlled study. Lancet Respir Med, 2020; 8(12): 1192-1200. doi: 10.1016/S2213-2600(20)30454-9
|
[136] |
Gibani M M, Toumazou C, Sohbati M, et al. Assessing a novel, lab-free, point-of-care test for SARS-CoV-2 (CovidNudge): a diagnostic accuracy study. Lancet Microbe, 2020; 1(7): e300-307. doi: 10.1016/S2666-5247(20)30121-X
|
[137] |
Zhang K, Liu X, Shen J, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography. Cell, 2020; 182(5): 1360. doi: 10.1016/j.cell.2020.08.029
|
[138] |
Mei X, Lee H C, Diao K Y, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med, 2020; 26(8): 1224-1228. doi: 10.1038/s41591-020-0931-3
|
[139] |
Jiao Z, Choi J W, Halsey K, et al. Prognostication of patients with COVID-19 using artificial intelligence based on chest x-rays and clinical data: a retrospective study. Lancet Digit Health, 2021; 3(5): e286-294. doi: 10.1016/S2589-7500(21)00039-X
|
[140] |
Wang G, Liu X, Shen J, et al. A deep-learning pipeline for the diagnosis and discrimination of viral, non-viral and COVID-19 pneumonia from chest X-ray images. Nat Biomed Eng, 2021; 5: 943. doi: 10.1038/s41551-021-00787-w
|
[141] |
Menni C, Valdes A M, Freidin M B, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med, 2020; 26(7): 1037-1040. doi: 10.1038/s41591-020-0916-2
|
[142] |
Mendels D A, Dortet L, Emeraud C, et al. Using artificial intelligence to improve COVID-19 rapid diagnostic test result interpretation. Proc Natl Aca Sci, 2021; 118(12): : e2019893118. doi: 10.1073/pnas.2019893118
|
[143] |
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med, 2020; 382(19): 1787-1799. doi: 10.1056/NEJMoa2001282
|
[144] |
Recovery Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (Recovery): a randomised, controlled, open-label, platform trial. Lancet, 2020; 396(10259): 1345-1352. doi: 10.1016/S0140-6736(20)32013-4
|
[145] |
Panerai S, Raggi A, Tasca D, et al. Telephone-based reality orientation therapy for patients with dementia: a pilot study during the COVID-19 outbreak. Am J Occup Ther, 2021; 75(2): 1-9.
|
[146] |
Hung I F, Lung K C, Tso E Y, et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial. Lancet, 2020; 395(10238): 1695-1704. doi: 10.1016/S0140-6736(20)31042-4
|
[147] |
Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med, 2022; 386: 1397-1408. doi: 10.1056/NEJMoa2118542
|
[148] |
Goldman J D, Lye D C B, Hui D S, et al. Remdesivir for 5 or 10 Days in patients with severe Covid-19. N Engl J Med, 2020; 383(19): 1827-1837. doi: 10.1056/NEJMoa2015301
|
[149] |
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020; 395(10236): 1569-1578. doi: 10.1016/S0140-6736(20)31022-9
|
[150] |
Beigel J H, Tomashek K M, Dodd L E, et al. Remdesivir for the treatment of Covid-19-final report. N Engl J Med, 2020; 383(19): 1813-1826. doi: 10.1056/NEJMoa2007764
|
[151] |
Spinner C D, Gottlieb R L, Criner G J, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA, 2020; 324(11): 1048-1057. doi: 10.1001/jama.2020.16349
|
[152] |
Yan D, Liu X Y, Zhu Y N, et al. Factors associated with prolonged viral shedding and impact of lopinavir/ritonavir treatment in hospitalised non-critically ill patients with SARS-CoV-2 infection. Eur Respir J, 2020; 56(1): 2000799. doi: 10.1183/13993003.00799-2020
|
[153] |
Gottlieb R L, Vaca C E, Paredes R, et al. Early Remdesivir to prevent progression to severe Covid-19 in outpatients. N Engl J Med, 2022; 386(4): 305-315. doi: 10.1056/NEJMoa2116846
|
[154] |
Jayk Bernal A, Gomes da Silva M M, Musungaie D B, et al. Molnupiravir for oral treatment of Covid-19 in nonhospitalized patients. N Engl J Med, 2022; 386(6): 509-520. doi: 10.1056/NEJMoa2116044
|
[155] |
Reis G, Silva E, Silva D C M, et al. Effect of early treatment with ivermectin among patients with Covid-19. N Engl J Med, 2022; 386: 1721-1731. doi: 10.1056/NEJMoa2115869
|
[156] |
Cavalcanti A B, Zampieri FG, Rosa R G, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med, 2020; 383(21): e119. doi: 10.1056/NEJMx200021
|
[157] |
Self W H, Semler M W, Leither L M, et al. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19: a randomized clinical trial. JAMA, 2020; 324(21): 2165-2176. doi: 10.1001/jama.2020.22240
|
[158] |
Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ, 2020; 369: m1849.
|
[159] |
Horby P, Mafham M, Linsell L, et al. Effect of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med, 2020; 383(21): 2030-2040. doi: 10.1056/NEJMoa2022926
|
[160] |
Boulware D R, Pullen M F, Bangdiwala A S, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for Covid-19. N Engl J Med, 2020; 383(6): 517-525. doi: 10.1056/NEJMoa2016638
|
[161] |
Mitjà O, Corbacho-Monné M, Ubals M, et al. A cluster-randomized trial of hydroxychloroquine for prevention of Covid-19. N Engl J Med, 2021; 384(5): 417-427. doi: 10.1056/NEJMoa2021801
|
[162] |
Zhao H, Zhang C, Zhu Q, et al. Favipiravir in the treatment of patients with SARS-CoV-2 RNA recurrent positive after discharge: a multicenter, open-label, randomized trial. Int Immunopharmacol, 2021; 97: 107702. doi: 10.1016/j.intimp.2021.107702
|
[163] |
Solaymani-Dodaran M, Ghanei M, Bagheri M, et al. Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int Immunopharmacol, 2021; 95: 107522. doi: 10.1016/j.intimp.2021.107522
|
[164] |
López-Medina E, López P, Hurtado I C, et al. Effect of ivermectin on time to resolution of symptoms among adults with mild COVID-19: a randomized clinical trial. JAMA, 2021; 325(14): 1426-1435. doi: 10.1001/jama.2021.3071
|
[165] |
Monk P D, Marsden R J, Tear V J, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (SNG001) for treatment of SARS-CoV-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med, 2021; 9(2): 196-206. doi: 10.1016/S2213-2600(20)30511-7
|
[166] |
Tomazini B M, Maia I S, Cavalcanti A B, et al. Effect of dexamethasone on days alive and ventilator-free in patients with moderate or severe acute respiratory distress syndrome and COVID-19: the CoDEX randomized clinical trial. JAMA, 2020; 324(13): 1307-1316. doi: 10.1001/jama.2020.17021
|
[167] |
Horby P, Lim W S, Emberson J R, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med, 2021; 384(8): 693-704. doi: 10.1056/NEJMoa2021436
|
[168] |
Angus D C, Derde L, Al-Beidh F, et al. Effect of hydrocortisone on mortality and organ support in patients with severe COVID-19: the REMAP-CAP COVID-19 corticosteroid domain randomized clinical trial. JAMA, 2020; 324(13): 1317-1329. doi: 10.1001/jama.2020.17022
|
[169] |
Dequin P F, Heming N, Meziani F, et al. Effect of hydrocortisone on 21-day mortality or respiratory support among Critically Ill patients with COVID-19: a randomized clinical trial. JAMA, 2020; 324(13): 1298-1306. doi: 10.1001/jama.2020.16761
|
[170] |
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with Coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med, 2020; 180(7): 934-943. doi: 10.1001/jamainternmed.2020.0994
|
[171] |
Kalil A C, Patterson T F, Mehta A K, et al. Baricitinib plus remdesivir for hospitalized adults with Covid-19. N Engl J Med, 2021; 384(9): 795-807. doi: 10.1056/NEJMoa2031994
|
[172] |
Lenze E J, Mattar C, Zorumski C F, et al. Fluvoxamine vs Placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA, 2020; 324(22): 2292-2300. doi: 10.1001/jama.2020.22760
|
[173] |
Ramakrishnan S, Nicolau D V, Jr Langford B, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med, 2021; 9(7): 763-772. doi: 10.1016/S2213-2600(21)00160-0
|
[174] |
Principle Trial Collaborative Group. Azithromycin for community treatment of suspected COVID-19 in people at increased risk of an adverse clinical course in the UK (Principle): a randomised, controlled, open-label, adaptive platform trial. Lancet, 2021; 397(10279): 1063-1074. doi: 10.1016/S0140-6736(21)00461-X
|
[175] |
Bhattacharya B, Kumar R, Meena V P, et al. SARS-CoV-2 RT-PCR profile in 298 Indian COVID-19 patients: a retrospective observational study. Path Dis, 2021; 79(1): 64.
|
[176] |
Furtado R H M, Berwanger O, Fonseca H A, et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION Ⅱ): a randomised clinical trial. Lancet, 2020; 396(10256): 959-967. doi: 10.1016/S0140-6736(20)31862-6
|
[177] |
Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol, 2020; 146(1): 137-146. doi: 10.1016/j.jaci.2020.05.019
|
[178] |
Murai I H, Fernandes A L, Sales L P, et al. Effect of a single high dose of Vitamin D3 on hospital length of stay in patients with moderate to severe COVID-19: a randomized clinical trial. JAMA, 2021; 325(11): 1053-1060. doi: 10.1001/jama.2020.26848
|
[179] |
Recovery Collaborative Group. Colchicine in patients admitted to hospital with COVID-19 (Recovery): a randomised, controlled, open-label, platform trial. Lancet Respir Med, 2021; 9(12): 1419-1426. doi: 10.1016/S2213-2600(21)00435-5
|
[180] |
Gordon A C, Mouncey P R, Al-Beidh F, et al. Interleukin-6 receptor antagonists in Critically Ill patients with Covid-19. N Engl J Med, 2021; 384(16): 1491-1502. doi: 10.1056/NEJMoa2100433
|
[181] |
Recovery Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (Recovery): a randomised, controlled, open-label, platform trial. Lancet, 2021; 397(10285): 1637-1645. doi: 10.1016/S0140-6736(21)00676-0
|
[182] |
Rosas I O, Bräu N, Waters M, et al. Tocilizumab in hospitalized patients with severe Covid-19 pneumonia. N Engl J Med, 2021; 384(16): 1503-1516. doi: 10.1056/NEJMoa2028700
|
[183] |
Hermine O, Mariette X, Tharaux P L, et al. Effect of tocilizumab vs usual care in adults hospitalized with COVID-19 and moderate or severe pneumonia: a randomized clinical trial. JAMA Intern Med, 2021; 181(1): 32-40. doi: 10.1001/jamainternmed.2020.6820
|
[184] |
Veiga V C, Prats J, Farias D L C, et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ, 2021; 372: n84.
|
[185] |
Soin A S, Kumar K, Choudhary N S, et al. Tocilizumab plus standard care versus standard care in patients in India with moderate to severe COVID-19-associated cytokine release syndrome (COVINTOC): an open-label, multicentre, randomised, controlled, phase 3 trial. Lancet Respir Med, 2021; 9(5): 511-521. doi: 10.1016/S2213-2600(21)00081-3
|
[186] |
Stone J H, Frigault M J, Serling-Boyd N J, et al. Efficacy of tocilizumab in patients hospitalized with Covid-19. N Engl J Med, 2020; 383(24): 2333-2344. doi: 10.1056/NEJMoa2028836
|
[187] |
Salvarani C, Dolci G, Massari M, et al. Effect of tocilizumab vs standard care on clinical worsening in patients hospitalized with COVID-19 pneumonia: a randomized clinical trial. JAMA Intern Med, 2021; 181(1): 24-31. doi: 10.1001/jamainternmed.2020.6615
|
[188] |
Lescure F X, Honda H, Fowler R A, et al. Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir Med, 2021; 9(5): 522-532. doi: 10.1016/S2213-2600(21)00099-0
|
[189] |
Cremer P C, Abbate A, Hudock K, et al. Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatol, 2021; 3: e410-e418. doi: 10.1016/S2665-9913(21)00070-9
|
[190] |
Cheng L L, Guan W J, Duan C Y, et al. Effect of recombinant human granulocyte colony-stimulating factor for patients with Coronavirus Disease 2019 (COVID-19) and lymphopenia: a randomized clinical trial. JAMA Intern Med, 2021; 181(1): 71-78. doi: 10.1001/jamainternmed.2020.5503
|
[191] |
Okoh A K, Bishburg E, Grinberg S, et al. Tocilizumab use in COVID-19-associated pneumonia. J Med Virol, 2021; 93(2): 1023-1028. doi: 10.1002/jmv.26471ternmed.2020.5503
|
[192] |
Vlaar A P J, de Bruin S, Busch M, et al. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. Lancet Rheumatol, 2020; 2(12): e764-773. doi: 10.1016/S2665-9913(20)30341-6
|
[193] |
Cheng Y, Wong R, Soo Y O, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis, 2005; 24(1): 44-46. doi: 10.1007/s10096-004-1271-9
|
[194] |
Weinreich D M, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with Covid-19. N Engl J Med, 2021; 384(3): 238-251. doi: 10.1056/NEJMoa2035002
|
[195] |
Wang J, Zheng X, Chen J. Clinical progression and outcomes of 260 patients with severe COVID-19: an observational study. Sci Rep, 2021; 11(1): 3166. doi: 10.1038/s41598-021-82943-5
|
[196] |
Gottlieb R L, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA, 2021; 325(7): 632-644. doi: 10.1001/jama.2021.0202
|
[197] |
Andreano E, Nicastri E, Paciello I, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell, 2021; 184(7): 1821-1835. doi: 10.1016/j.cell.2021.02.035
|
[198] |
Libster R, Pérez Marc G, Wappner D, et al. Early high-titer plasma therapy to prevent severe Covid-19 in older adults. N Engl J Med, 2021; 384(7): 610-618. doi: 10.1056/NEJMoa2033700
|
[199] |
Agarwal A, Mukherjee A, Kumar G, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase Ⅱ multicentre randomised controlled trial (PLACID Trial). BMJ, 2020; 371: m3939.
|
[200] |
Simonovich V A, Burgos Pratx L D, Scibona P, et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med, 2021; 384(7): 619-629. doi: 10.1056/NEJMoa2031304
|
[201] |
Lundgren J D, Grund B, Barkauskas C E, et al. A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med, 2021; 384(10): 905-914. doi: 10.1056/NEJMoa2033130
|
[202] |
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial. JAMA, 2020; 324(5): 460-470. doi: 10.1001/jama.2020.10044
|
[203] |
Janiaud P, Axfors C, Schmitt A M, et al. Association of convalescent plasma treatment with clinical outcomes in patients with COVID-19: a systematic review and meta-analysis. JAMA, 2021; 325(12): 1185-1195. doi: 10.1001/jama.2021.2747
|
[204] |
Sullivan D J, Gebo K A, Shoham S, et al. Early outpatient treatment for Covid-19 with convalescent plasma. N Engl J Med, 2022; 386: 1700-1711. doi: 10.1056/NEJMoa2119657
|
[205] |
Mancia G, Rea F, Ludergnani M, et al. Renin-Angiotensin-Aldosterone system blockers and the risk of Covid-19. N Engl J Med, 2020; 382(25): 2431-2440. doi: 10.1056/NEJMoa2006923
|
[206] |
Reynolds H R, Adhikari S, Pulgarin C, et al. Renin-Angiotensin-Aldosterone system inhibitors and risk of Covid-19. N Engl J Med, 2020; 382(25): 2441-2448. doi: 10.1056/NEJMoa2008975
|
[207] |
Morales D R, Conover M M, You S C, et al. Renin-angiotensin system blockers and susceptibility to COVID-19: an international, open science, cohort analysis. Lancet Digit health, 2021; 3(2): e98-114. doi: 10.1016/S2589-7500(20)30289-2
|
[208] |
=Mehta N, Kalra A, Nowacki A S, et al. Association of use of angiotensin-converting enzyme inhibitors and Angiotensin Ⅱ receptor blockers with testing positive for Coronavirus Disease 2019 (COVID-19). JAMA Cardiol, 2020; 5(9): 1020-1026. doi: 10.1001/jamacardio.2020.1855
|
[209] |
de Abajo F J, Rodríguez-Martín S, Lerma V, et al. Use of renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring admission to hospital: a case-population study. Lancet, 2020; 395(10238): 1705-1714. doi: 10.1016/S0140-6736(20)31030-8
|
[210] |
Lopes R D, Macedo A V S, de Barros E Silva P G M, , et al. Effect of discontinuing vs continuing angiotensin-converting enzyme inhibitors and Angiotensin Ⅱ receptor blockers on days alive and out of the hospital in patients admitted with COVID-19: a randomized clinical trial. JAMA, 2021; 325(3): 254-264. doi: 10.1001/jama.2020.25864
|
[211] |
Cohen J B, Hanff T C, William P, et al. Continuation versus discontinuation of renin-angiotensin system inhibitors in patients admitted to hospital with COVID-19: a prospective, randomised, open-label trial. Lancet Respir Med, 2021; 9(3): 275-284. doi: 10.1016/S2213-2600(20)30558-0
|
[212] |
Haas E J, Angulo F J, McLaughlin J M, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet, 2021; 397: 1819-1829. doi: 10.1016/S0140-6736(21)00947-8
|
[213] |
Anderson E J, Rouphael N G, Widge A T, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med, 2020; 383(25): 2427-2438. doi: 10.1056/NEJMoa2028436
|
[214] |
Walsh E E, Frenck R W Jr, Falsey A R, et al. Safety and immunogenicity of two RNA-Based Covid-19 vaccine candidates. N Engl J Med, 2020; 383(25): 2439-2450. doi: 10.1056/NEJMoa2027906
|
[215] |
Keech C, Albert G, Cho I, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med, 2020; 383(24): 2320-2332. doi: 10.1056/NEJMoa2026920
|
[216] |
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26. COV2. S vaccine against Covid-19. N Engl J Med, 2021; 384: 2187-2201. doi: 10.1056/NEJMoa2101544
|
[217] |
Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1-2a trial of Ad26. COV2. S Covid-19 vaccine. N Engl J Med, 2021; 384: 1824-1835. doi: 10.1056/NEJMoa2034201
|
[218] |
Polack F P, Thomas S J, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N Engl J Med, 2020; 383(27): 2603-2615. doi: 10.1056/NEJMoa2034577
|
[219] |
Baden L R, El Sahly H M, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med, 2021; 384(5): 403-416. doi: 10.1056/NEJMoa2035389
|
[220] |
Dagan N, Barda N, Kepten E, et al. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med, 2021; 384(15): 1412-1423. doi: 10.1056/NEJMoa2101765
|
[221] |
Goepfert P A, Fu B, Chabanon A L, et al. Safety and immunogenicity of SARS-CoV-2 recombnant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1-2, dose-ranging study. Lancet Infect Dis, 2021; 21: 1257-1270. doi: 10.1016/S1473-3099(21)00147-X
|
[222] |
Stephenson K E, Le Gars M, Sadoff J, et al. Immunogenicity of the Ad26. COV2. S Vaccine for COVID-19. JAMA, 2021; 325(15): 1535-44. doi: 10.1001/jama.2021.3645
|
[223] |
Monin L, Laing A G, Muñoz-Ruiz M, et al. Safety and immunogenicity of one versus two doses of the COVID-19 vaccine BNT162b2 for patients with cancer: interim analysis of a prospective observational study. Lancet Oncol, 2021; 22: 765-778. doi: 10.1016/S1470-2045(21)00213-8
|
[224] |
Folegatti P M, Ewer K J, Aley P K, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020; 396(10249): 467-78. doi: 10.1016/S0140-6736(20)31604-4
|
[225] |
Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis, 2021; 21(1): 39-51. doi: 10.1016/S1473-3099(20)30831-8
|
[226] |
Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis, 2021; 21(2): 181-192. doi: 10.1016/S1473-3099(20)30843-4
|
[227] |
Zhu F C, Guan X H, Li Y H, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 2020; 396(10249): 479-488. doi: 10.1016/S0140-6736(20)31605-6
|
[228] |
Logunov D Y, Dolzhikova I V, Shcheblyakov D V, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021; 397(10275): 671-681. doi: 10.1016/S0140-6736(21)00234-8
|
[229] |
Ramasamy M N, Minassian A M, Ewer K J, et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet, 2021; 396(10267): 1979-1993.
|
[230] |
Voysey M, Clemens S A C, Madhi S A, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021; 397(10269): 99-111. doi: 10.1016/S0140-6736(20)32661-1
|
[231] |
Voysey M, Costa Clemens S A, Madhi S A, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet, 2021; 397(10277): 881-891. doi: 10.1016/S0140-6736(21)00432-3
|
[232] |
Ella R, Vadrevu K M, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis, 2021; 21(5): 637-646. doi: 10.1016/S1473-3099(20)30942-7
|
[233] |
Richmond P, Hatchuel L, Dong M, et al. Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: a phase 1, randomised, double-blind, placebo-controlled trial. Lancet, 2021; 397(10275): 682-694. doi: 10.1016/S0140-6736(21)00241-5
|
[234] |
Chappell K J, Mordant F L, Li Z, et al. Safety and immunogenicity of an MF59-adjuvanted spike glycoprotein-clamp vaccine for SARS-CoV-2: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Infect Dis, 2021; 21: 1383-1394. doi: 10.1016/S1473-3099(21)00200-0
|
[235] |
Xia S, Duan K, Zhang Y, et al. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials. JAMA, 2020; 324(10): 951-960. doi: 10.1001/jama.2020.15543
|
[236] |
Wu Z, Hu Y, Xu M, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis, 2021; 21: 803-812. doi: 10.1016/S1473-3099(20)30987-7
|
[237] |
Greinacher A, Thiele T, Warkentin T E, et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med, 2021.
|
[238] |
Schultz N H, Sørvoll I H, Michelsen A E, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med, 2021.
|
[239] |
Scully M, Singh D, Lown R, et al. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med, 2021; 384: 2202-2211. doi: 10.1056/NEJMoa2105385
|
[240] |
Muir K L, Kallam A, Koepsell S A, et al. Thrombotic thrombocytopenia after Ad26. COV2. S vaccination. N Engl J Med, 2021; 384: 1964-1965. doi: 10.1056/NEJMc2105869
|
[241] |
Pottegård A, Lund L C, Karlstad Ø, et al. Events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: population based cohort study. BMJ, 2021; 373: n1114.
|
[242] |
Goldberg Y, Mandel M, Bar-On Y M, et al. Waning immunity after the BNT162b2 vaccine in israel. n engl j med, 2021; 385(24): e85. doi: 10.1056/NEJMoa2114228
|
[243] |
Levin E G, Lustig Y, Cohen C, et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N Engl J Med, 2021; 385(24): e84. doi: 10.1056/NEJMoa2114583
|
[244] |
Atmar R L, Lyke K E, Deming M E, et al. Homologous and heterologous Covid-19 booster vaccinations. N Engl J Med, 2022; 386(11): 1046-1057. doi: 10.1056/NEJMoa2116414
|
[245] |
Stuart A S V, Shaw R H, Liu X, et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet, 2022; 399(10319): 36-49. doi: 10.1016/S0140-6736(21)02718-5
|
[246] |
Munro A P S, Janani L, Cornelius V, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet, 2021; 398(10318): 2258-2276. doi: 10.1016/S0140-6736(21)02717-3
|
[247] |
Rearte A, Castelli J M, Rearte R, et al. Effectiveness of rAd26-rAd5, ChAdOx1 nCoV-19, and BBIBP-CorV vaccines for risk of infection with SARS-CoV-2 and death due to COVID-19 in people older than 60 years in Argentina: a test-negative, case-control, and retrospective longitudinal study. Lancet, 2022; 399(10331): 1254-1264. doi: 10.1016/S0140-6736(22)00011-3
|
[248] |
Costa Clemens S A, Weckx L, Clemens R, et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet, 2022; 399(10324): 521-529. doi: 10.1016/S0140-6736(22)00094-0
|
[249] |
Widge A T, Rouphael N G, Jackson L A, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med, 2021; 384(1): 80-82. doi: 10.1056/NEJMc2032195
|
[250] |
Doria-Rose N, Suthar M S, Makowski M, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for Covid-19. N Engl J Med, 2021; 384: 2259-2261. doi: 10.1056/NEJMc2103916
|
[251] |
Wang Z, Wang Y, Yang Z, et al. The use of non-invasive ventilation in COVID-19: a systematic review. Int J Infect Dis, 2021; 106: 254-261. doi: 10.1016/j.ijid.2021.03.078
|
[252] |
Schünemann H J, Khabsa J, Solo K, et al. Ventilation techniques and risk for transmission of Coronavirus disease, including COVID-19: a living systematic review of multiple streams of evidence. Ann Intern Med, 2020; 173(3): 204-216. doi: 10.7326/M20-2306
|
[253] |
Grieco D L, Menga L S, Cesarano M, et al. Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA, 2021; 325(17): 1731-1743. doi: 10.1001/jama.2021.4682
|
[254] |
Sartini C, Tresoldi M, Scarpellini P, et al. Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. JAMA, 2020; 323(22): 2338-2340. doi: 10.1001/jama.2020.7861
|
[255] |
Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med, 2020; 8(8): 765-774. doi: 10.1016/S2213-2600(20)30268-X
|
[256] |
Botta M, Tsonas A M, Pillay J, et al. Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study. Lancet Respir Med, 2021; 9(2): 139-148. doi: 10.1016/S2213-2600(20)30459-8
|
[257] |
Barbaro R P, MacLaren G, Boonstra P S, et al. Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet, 2020; 396(10257): 1071-1078. doi: 10.1016/S0140-6736(20)32008-0
|
[258] |
Schmidt M, Hajage D, Lebreton G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med, 2020; 8(11): 1121-1131. doi: 10.1016/S2213-2600(20)30328-3
|
[259] |
Lebreton G, Schmidt M, Ponnaiah M, et al. Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study. Lancet Respir Med, 2021; 9: 851-862. doi: 10.1016/S2213-2600(21)00096-5
|
[260] |
Bharat A, Machuca T N, Querrey M, et al. Early outcomes after lung transplantation for severe COVID-19: a series of the first consecutive cases from four countries. Lancet Respir Med, 2021; 9(5): 487-497. doi: 10.1016/S2213-2600(21)00077-1
|
[261] |
Morin L, Savale L, Pham T, et al. Four-Month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA, 2021; 325(15): 1525-1534. doi: 10.1001/jama.2021.3331
|
[262] |
Wu X, Liu X, Zhou Y, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med, 2021; 9(7): 747-754. doi: 10.1016/S2213-2600(21)00174-0
|
[263] |
Myall K J, Mukherjee B, Castanheira A M, et al. Persistent post-COVID-19 interstitial lung disease. An observational study of corticosteroid treatment. Ann Am Thorac Soc, 2021; 18(5): 799-806. doi: 10.1513/AnnalsATS.202008-1002OC
|
[264] |
Taquet M, Geddes J R, Husain M, et al. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psych, 2021; 8(5): 416-427. doi: 10.1016/S2215-0366(21)00084-5
|
[265] |
Ayoubkhani D, Khunti K, Nafilyan V, et al. Post-covid syndrome in individuals admitted to hospital with Covid-19: retrospective cohort study. BMJ, 2021; 372: n693.
|
[266] |
Aldhahir A M, Aldabayan Y S, Alqahtani J S, et al. A double-blind randomised controlled trial of protein supplementation to enhance exercise capacity in COPD during pulmonary rehabilitation: a pilot study. ERJ Open Res, 2021; 7(1): 747-754.
|
[267] |
Center for Global Development. Financing for Global Health Security and Pandemic Preparedness: Taking Stock and What's Next.
|