Citation: | Yongting Zhao, Xiaofang Zhang, Haihai Liang, Lihong Wang. Antidiabetic agents: Do they hit the right targets?[J]. Frigid Zone Medicine, 2022, 2(4): 225-243. doi: 10.2478/fzm-2022-0030 |
[1] |
Benito-Vicente A, Jebari S, Larrea-Sebal A, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci, 2020; 21(17): 6275. doi: 10.3390/ijms21176275
|
[2] |
Chatterjee S, Khunti K, Davies M J. Type 2 diabetes. Lancet, 2017; 389(10085): 2239-2251. doi: 10.1016/S0140-6736(17)30058-2
|
[3] |
Stumvoll M, Goldstein B J, van Haeften T W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet, 2005; 365(9467): 1333-1346. doi: 10.1016/S0140-6736(05)61032-X
|
[4] |
Yoon K H, Lee J H, Kim J W, et al. Epidemic obesity and type 2 diabetes in Asia. Lancet, 2006; 368(9548): 1681-1688. doi: 10.1016/S0140-6736(06)69703-1
|
[5] |
Weyer C, Bogardus C, Mott D M, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest, 1999; 104(6): 787-794. doi: 10.1172/JCI7231
|
[6] |
Christensen A A, Gannon M. The beta cell in type 2 diabetes. Curr Diab Rep, 2019; 19(9): 81. doi: 10.1007/s11892-019-1196-4
|
[7] |
Halban P A, Polonsky K S, Bowden D W, et al. Beta-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care, 37(6): 1751-1758.
|
[8] |
Czech M P. Insulin action and resistance in obesity and type 2 diabetes. Nat Med, 2017; 23(7): 804-814. doi: 10.1038/nm.4350
|
[9] |
Pearson T, Wattis J A, King J R, et al. The effects of insulin resistance on individual tissues: an application of a mathematical model of metabolism in humans. Bull Math Biol, 2016; 78(6): 1189-1217. doi: 10.1007/s11538-016-0181-1
|
[10] |
Wilcox G. Insulin and insulin resistance. Clin Biochem Rev, 2005; 26(2): 19-39.
|
[11] |
Cerf M E. Beta cell dysfunction and insulin resistance. Front Endocrinol (Lausanne), 2013; 4: 37.
|
[12] |
Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018; 14(2): 88-98. doi: 10.1038/nrendo.2017.151
|
[13] |
Battisti W P, Palmisano J, Keane W E. Dyslipidemia in patients with type 2 diabetes. relationships between lipids, kidney disease and cardiovascular disease. Clin Chem Lab Med, 2003; 41(9): 1174-1181.
|
[14] |
Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia, 2015; 58(5): 886-899. doi: 10.1007/s00125-015-3525-8
|
[15] |
Taskinen M R. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia, 2003; 46(6): 733-749. doi: 10.1007/s00125-003-1111-y
|
[16] |
Chapman M J. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J, 2011; 32(11): 1345-1361. doi: 10.1093/eurheartj/ehr112
|
[17] |
Nordestgaard B G, Varbo A. Triglycerides and cardiovascular disease. Lancet, 2014; 384(9943): 626-635. doi: 10.1016/S0140-6736(14)61177-6
|
[18] |
Yamamoto W R. Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic beta cell. J Biol Chem, 2019; 294(1): 168-181. doi: 10.1074/jbc.RA118.005683
|
[19] |
Lynch S V, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med, 2016; 375(24): 2369-2379. doi: 10.1056/NEJMra1600266
|
[20] |
Li X, Watanabe K, Kimura I. Gut microbiota dysbiosis drives and implies novel therapeutic strategies for diabetes mellitus and related metabolic diseases. Front Immunol, 2017; 8: 1882. doi: 10.3389/fimmu.2017.01882
|
[21] |
Tang C, Ahmed K, Gille A, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med, 2015; 21(2): 173-177. doi: 10.1038/nm.3779
|
[22] |
Petersen K F, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science, 2003; 300(5622): 1140-1142. doi: 10.1126/science.1082889
|
[23] |
Kim J A, Wei Y, Sowers J R. Role of mitochondrial dysfunction in insulin resistance. Circ Res, 2008; 102(4): 401-414. doi: 10.1161/CIRCRESAHA.107.165472
|
[24] |
Schofield J H, Schafer Z T. Mitochondrial reactive oxygen species and mitophagy: a complex and nuanced relationship. Antioxid Redox Signal, 2021; 34(7): 517-530. doi: 10.1089/ars.2020.8058
|
[25] |
Kadowaki T, Kadowaki H, Mori Y, et al. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med, 1994; 330(14): 962-968. doi: 10.1056/NEJM199404073301403
|
[26] |
Tawata M, Hayashi J I, Isobe K, et al. A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes. Diabetes, 2000; 49(7): 1269-1272. doi: 10.2337/diabetes.49.7.1269
|
[27] |
Wang D, Taniyama M, Suzuki Y, et al. Association of the mitochondrial DNA 5178A/C polymorphism with maternal inheritance and onset of type 2 diabetes in Japanese patients. Exp Clin Endocrinol Diabetes, 2001; 109(7): 361-364.
|
[28] |
Nesto R W. Correlation between cardiovascular disease and diabetes mellitus: current concepts. Am J Med, 2004; 116(Suppl 5A): 11S-22S.
|
[29] |
Haffner S M, Lehto S, Ronnemaa T, et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med, 1998; 339(4): 229-234. doi: 10.1056/NEJM199807233390404
|
[30] |
Beckman J A, Creager M A, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA, 2002; 287(19): 2570-2581. doi: 10.1001/jama.287.19.2570
|
[31] |
Holman R R, Paul S K, Bethel M A, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med, 2008; 359(15): 1577-1589. doi: 10.1056/NEJMoa0806470
|
[32] |
Turner R C, Cull C A, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA, 1999; 281(21): 2005-2012.
|
[33] |
Ihnat M A, Thorpe J E, Kamat C D, et al. Reactive oxygen species mediate a cellular 'memory' of high glucose stress signalling. Diabetologia, 2007; 50(7): 1523-1531. doi: 10.1007/s00125-007-0684-2
|
[34] |
Olsen A S, Sarras Jr M P, Leontovich A, et al. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes, 2012; 61(2): 485-491. doi: 10.2337/db11-0588
|
[35] |
Poy M N, Hausser J, Trajkovski M, et al. miR-375 maintains normal pancreatic alpha-and beta-cell mass. Proc Natl Acad Sci U S A, 2009; 106(14): 5813-5818. doi: 10.1073/pnas.0810550106
|
[36] |
Reddy M A, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia, 2015; 58(3): 443-455. doi: 10.1007/s00125-014-3462-y
|
[37] |
Brasacchio D, Okabe J, Tikellis C, et al. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes, 2009; 58(5): 1229-1236. doi: 10.2337/db08-1666
|
[38] |
Al-Haddad R, Karnib N, Assaad R A, et al. Epigenetic changes in diabetes. Neurosci Lett, 2016; 625: 64-69. doi: 10.1016/j.neulet.2016.04.046
|
[39] |
Ceriello A, Ihnat M A, Thorpe J E. Clinical review 2: The "metabolic memory": is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab, 2009; 94(2): 410-415. doi: 10.1210/jc.2008-1824
|
[40] |
Nishikawa T, Edelstein D, Du X L, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature, 2000; 404(6779): 787-790. doi: 10.1038/35008121
|
[41] |
Reddy M A, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res, 2011; 90(3): 421-429. doi: 10.1093/cvr/cvr024
|
[42] |
Guarner V, Rubio-Ruiz M E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip Top Gerontol, 2015; 40: 99-106.
|
[43] |
Flory J, Lipska K. Metformin in 2019. JAMA, 2019; 322(13): 1926-1927.
|
[44] |
American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2019. Diabetes Care, 2019; 42(Supl 1): S90-S102.
|
[45] |
Turner R C, Holman R R, Stratton I M. Effect of intensive bloodglucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 1998; 352(9131): 854-865. doi: 10.1016/S0140-6736(98)07037-8
|
[46] |
De Vries S T, Denig P, Ekhart C, et al. Sex differences in adverse drug reactions of metformin: a longitudinal survey study. Drug Saf, 2020; 43(5): 489-495. doi: 10.1007/s40264-020-00913-8
|
[47] |
Rena G, Hardie D G, Pearson E R. The mechanisms of action of metformin. Diabetologia, 2017; 60(9): 1577-1585. doi: 10.1007/s00125-017-4342-z
|
[48] |
Knowler W C, Barrett-Connor E, Fowle S E, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med, 2002; 346(6): 393-403. doi: 10.1056/NEJMoa012512
|
[49] |
Markowicz-Piasecka M, Sikora J, Szydlowska A, et al. Metformin-a future therapy for neurodegenerative diseases: theme: drug discovery, development and delivery in alzheimer's disease guest editor: davide brambilla. Pharm Res, 2017; 34(12): 2614-2627. doi: 10.1007/s11095-017-2199-y
|
[50] |
Hundal R S, Inzucchi S E. Metformin: new understandings, new uses. Drugs, 2003; 63(18): 1879-1894. doi: 10.2165/00003495-200363180-00001
|
[51] |
Martin-Montalvo A, Mercken E M, Mitchell S J, et al. Metformin improves healthspan and lifespan in mice. Nat Commun, 2013; 4: 2192. doi: 10.1038/ncomms3192
|
[52] |
Pearce E L, Walsh M C, Cejas P J, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature, 2009; 460(7251): 103-107. doi: 10.1038/nature08097
|
[53] |
Sui X, Xu Y, Wang X, et al. Metformin: a novel but controversial drug in cancer prevention and treatment. Mol Pharm, 2015; 12(11): 3783-3791. doi: 10.1021/acs.molpharmaceut.5b00577
|
[54] |
Podhorecka M, Ibanez B, Dmoszynska A. Metformin-its potential anti-cancer and anti-aging effects. Postepy Hig Med Dosw (Online), 2017; 71: 170-175.
|
[55] |
McCreight L J, Bailey C J, Pearson E R. Metformin and the gastrointestinal tract. Diabetologia, 2016; 59(3): 426-435. doi: 10.1007/s00125-015-3844-9
|
[56] |
Shaw R J, Lamia K A, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 2005; 310(5754): 1642-1646. doi: 10.1126/science.1120781
|
[57] |
Singh A K, Gupta R, Ghosh A, et al. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr, 2020; 14(4): 303-310. doi: 10.1016/j.dsx.2020.04.004
|
[58] |
Pal R, Bhadada S K. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr, 2020; 14(4): 513-517. doi: 10.1016/j.dsx.2020.04.049
|
[59] |
Bornstein S R, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol, 2020; 8(6): 546-550. doi: 10.1016/S2213-8587(20)30152-2
|
[60] |
Scheen A J. Metformin and COVID-19: From cellular mechanisms to reduced mortality. Diabetes Metab, 2020; 46(6): 423-426. doi: 10.1016/j.diabet.2020.07.006
|
[61] |
Huang I, Lim M A, Pranata, R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia-A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr, 2020; 14(4): 395-403. doi: 10.1016/j.dsx.2020.04.018
|
[62] |
Bramante C T, Ingraham N E, Murray T A, et al. Observational Study of Metformin and Risk of Mortality in Patients Hospitalized with Covid-19. Lancet Healthy Longev, 2021; 2(1): e34-e41. doi: 10.1016/S2666-7568(20)30033-7
|
[63] |
Sola D, Rossi L, Schianca G P C, et al. Sulfonylureas and their use in clinical practice. Arch Med Sci, 2015; 11(4): 840-848.
|
[64] |
Melander A, Lebovitz H E, Faber O K. Sulfonylureas. Why, which, and how? Diabetes Care, 1990; 13(Suppl 3): 18-25.
|
[65] |
Marshall A, Gingerich R L, Wright P H. Hepatic effect of sulfonylureas. Metabolism, 1970; 19(12): 1046-1052. doi: 10.1016/0026-0495(70)90028-4
|
[66] |
Landstedt-Hallin L, Adamson U, Lins P E. Oral glibenclamide suppresses glucagon secretion during insulin-induced hypoglycemia in patients with type 2 diabetes. J Clin Endocrinol Metab, 1999; 84(9): 3140-3145.
|
[67] |
Scarsi M, Podvinec M, Roth A, et al. Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach. Mol Pharmacol, 2007; 71(2): 398-406. doi: 10.1124/mol.106.024596
|
[68] |
Müller G. Dynamics of plasma membrane microdomains and crosstalk to the insulin signalling cascade. FEBS Lett, 2002; 531(1): 1-87. doi: 10.1016/S0014-5793(02)03452-X
|
[69] |
Nakano N, Miyazawa N, Sakurai T, et al. Gliclazide inhibits proliferation but stimulates differentiation of white and brown adipocytes. J Biochem, 2007; 142(5): 639-645. doi: 10.1093/jb/mvm172
|
[70] |
Sena C M, Louro T, Matafome P, et al. Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-fat diet. Physiol Res, 2009; 58(2): 203-209.
|
[71] |
Lee K Y, Kim J R, Choi H C. Gliclazide, a KATP channel blocker, inhibits vascular smooth muscle cell proliferation through the CaMKKbeta-AMPK pathway. Vascul Pharmacol, 2018; 102: 21-28. doi: 10.1016/j.vph.2018.01.001
|
[72] |
Rados D V, Pinto L C, Remonti L R, et al. Correction: The association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med, 13(6): e1002091 doi: 10.1371/journal.pmed.1002091
|
[73] |
Sehra D, Sehra S. Hypertension in type 2 diabetes mellitus: do we need to redefine the role of sulfonylureas? Recent Adv Cardiovasc Drug Discov, 2015; 10(1): 4-9.
|
[74] |
Webb D R, Davies M J, Jarvis J, et al. The right place for Sulphonylureas today. Diabetes Res Clin Pract, 2019; 157: 107836. doi: 10.1016/j.diabres.2019.107836
|
[75] |
Thisted H, Johnsen S P, Rungby J. Sulfonylureas and the risk of myocardial infarction. Metabolism, 2006; 55(5 Suppl 1): S16-S19.
|
[76] |
Ramracheya R, Ward C, Shigeto M, et al. Membrane potentialdependent inactivation of voltage-gated ion channels in alpha-cells inhibits glucagon secretion from human islets. Diabetes, 2010; 59(9): 2198-2208. doi: 10.2337/db09-1505
|
[77] |
Braun M, Ramracheya R, Amisten S, et al. Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia, 2009; 52(8): 1566-1578. doi: 10.1007/s00125-009-1382-z
|
[78] |
Blumenthal S A. Potentiation of the hepatic action of insulin by chlorpropamide. Diabetes, 1977; 26(5): 485-489. doi: 10.2337/diab.26.5.485
|
[79] |
Lv W, Wang X, Xu Q, et al. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem, 2020; 20(1): 37-56. doi: 10.2174/1568026620666191224141617
|
[80] |
Ballmann M, Hubert D, Assael B M, et al. Repaglinide versus insulin for newly diagnosed diabetes in patients with cystic fibrosis: a multicentre, open-label, randomised trial. Lancet Diabetes Endocrinol, 2018; 6(2): 114-121. doi: 10.1016/S2213-8587(17)30400-X
|
[81] |
Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes, 1998; 47(3): 345-351. doi: 10.2337/diabetes.47.3.345
|
[82] |
Davies M J. Insulin secretagogues. Curr Med Res Opin, 2002; 18(Suppl 1): s22-s30.
|
[83] |
Zhou X Y, Zhu J, Bao Z J, et al. A variation in KCNQ1 gene is associated with repaglinide efficacy on insulin resistance in Chinese Type 2 Diabetes Mellitus Patients. Sci Rep, 2016; 6: 37293. doi: 10.1038/srep37293
|
[84] |
Xiao Z X, Chen R Q, Hu D X, et al. Identification of repaglinide as a therapeutic drug for glioblastoma multiforme. Biochem Biophys Res Commun, 2017; 488(1): 33-39. doi: 10.1016/j.bbrc.2017.04.157
|
[85] |
Ford E S. Risks for all-cause mortality, cardiovascular disease, and diabetes associated with the metabolic syndrome: a summary of the evidence. Diabetes Care, 2005; 28(7): 1769-1778. doi: 10.2337/diacare.28.7.1769
|
[86] |
Buchanan T A, Xiang A H, Peters R K, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes, 2002; 51(9): 2796-2803. doi: 10.2337/diabetes.51.9.2796
|
[87] |
Diamant M, Heine R J. Thiazolidinediones in type 2 diabetes mellitus: current clinical evidence. Drugs, 2003; 63(13): 1373-1405. doi: 10.2165/00003495-200363130-00004
|
[88] |
Reusch J E, Regensteiner J G, Watson P A. Novel actions of thiazolidinediones on vascular function and exercise capacity. Am J Med, 2003; 115(Suppl 8A): 69S-74S.
|
[89] |
Giles T D, Sander G E. Effects of thiazolidinediones on blood pressure. Curr Hypertens Rep, 2007; 9(4): 332-337. doi: 10.1007/s11906-007-0060-0
|
[90] |
Ko G J, Kang Y S, Han S Y, et al. Pioglitazone attenuates diabetic nephropathy through an anti-inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant, 2008; 23(9): 2750-2760. doi: 10.1093/ndt/gfn157
|
[91] |
Sarafidis P A, Grekas D M. Insulin resistance and oxidant stress: an interrelation with deleterious renal consequences? J Cardiometab Syndr, 2007; 2(2): 39-142.
|
[92] |
Pistrosch F, Herbrig K, Kindel B, et al. Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients. Diabetes, 2005; 54(7): 2206-2211. doi: 10.2337/diabetes.54.7.2206
|
[93] |
Sarafidis P A, Bakris G L. Protection of the kidney by thiazolidinediones: an assessment from bench to bedside. Kidney Int, 2006; 70(7): 1223-1233. doi: 10.1038/sj.ki.5001620
|
[94] |
Buckingham R E, Al-barazanji K A, Toseland C D, et al. Peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats. Diabetes, 1998; 47(8): 1326-1334.
|
[95] |
Yoshimoto T, Naruse M, Nishikawa M, et al. Antihypertensive and vasculo-and renoprotective effects of pioglitazone in genetically obese diabetic rats. Am J Physiol, 1997; 272(6 Pt 1): E989-E996.
|
[96] |
Nesto R W, Bell D, Bonow R O, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care, 2004; 27(1): 256-263. doi: 10.2337/diacare.27.1.256
|
[97] |
Sarafidis P A, Stafylas P C, Georgianos P I, et al. Effect of thiazolidinediones on albuminuria and proteinuria in diabetes: a metaanalysis. Am J Kidney Dis, 2010; 55(5): 835-847. doi: 10.1053/j.ajkd.2009.1
|
[98] |
Tseng Y H, Tsan Y T, Chan W C, et al. Use of an alpha-glucosidase inhibitor and the risk of colorectal cancer in patients with diabetes: a nationwide, population-based cohort study. Diabetes Care, 2015; 38(11): 2068-2074. doi: 10.2337/dc15-0563
|
[99] |
Tamez-Perez H E, Proskauer-Pena S L, Hernrndez-Coria M I, et al. AACE comprehensive diabetes management algorithm 2013. Endocrine practice. Endocr Pract, 2013; 19(4): 736-737. doi: 10.4158/EP13210.LT
|
[100] |
Van de Laa F A, Kucassen P L B, Akkermans R P, et al. Alphaglucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev, 2005; 2005(2): CD003639.
|
[101] |
Standl E, Schnell O, McGuire D K. Heart failure considerations of antihyperglycemic medications for type 2 diabetes. Circ Res, 2016; 118(11): 1830-1843. doi: 10.1161/CIRCRESAHA.116.306924
|
[102] |
Hoffmann J, Spengler M. Efficacy of 24-week monotherapy with acarbose, glibenclamide, or placebo in NIDDM patients. The Essen Study. Diabetes Care, 1994; 17(6): 561-566. doi: 10.2337/diacare.17.6.561
|
[103] |
Chiasson J L. Acarbose for the prevention of diabetes, hypertension, and cardiovascular disease in subjects with impaired glucose tolerance: the Study to Prevent Non-Insulin-Dependent Diabetes Mellitus (STOP-NIDDM) Trial. Endocr Pract, 2006; 12(Suppl 1): 25-30.
|
[104] |
Han X, Deng Y P, Yu J W, et al. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db Mice. Oxid Med Cell Longev, 2017; 2017: 7809581.
|
[105] |
Dodds S G, Parihar M, Javors M, et al. Acarbose improved survival for Apc(+/Min) mice. Aging Cell, 2020; 19(2): e13088.
|
[106] |
Smith B J, Miller R A, Ericsson A C, et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice. BMC Microbiol, 2019; 19(1): 130. doi: 10.1186/s12866-019-1494-7
|
[107] |
Kang S H, Jung D J, Choi E W, et al. Association between lowgrade albuminuria and hearing impairment in a non-diabetic Korean population: The Korea National Health and Nutrition Examination Survey (2011-2013). Ann Med, 2015; 47(8): 664-672. doi: 10.3109/07853890.2015.1093163
|
[108] |
Chida S, Fujita Y, Ogawa A, et al. Levels of albuminuria and risk of developing macroalbuminuria in type 2 diabetes: historical cohort study. Sci Rep, 2016; 6: 26380. doi: 10.1038/srep26380
|
[109] |
Pan Q, Xu Y, Yang N, et al. Metformin or acarbose treatment significantly reduced albuminuria in patients with newly diagnosed type 2 diabetes mellitus and low-grade albuminuria. Med Sci Monit, 2018; 24: 8941-8949. doi: 10.12659/MSM.911979
|
[110] |
Chen X, Zheng Y, Shen Y. Voglibose (Basen, AO-128), one of the most important alpha-glucosidase inhibitors. Curr Med Chem, 2006; 13(1): 109-116. doi: 10.2174/092986706789803035
|
[111] |
Scott L J, Spencer C M. Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus. Drugs, 2000; 59(3): 521-549. doi: 10.2165/00003495-200059030-00012
|
[112] |
Wang H, Shen Y, Zhao L, et al. 1-Deoxynojirimycin and its derivatives: a mini review of the literature. Curr Med Chem, 2021; 28(3): 628-643. doi: 10.2174/0929867327666200114112728
|
[113] |
Wang N, Minatoguchi S, Chen X H, et al. Antidiabetic drug miglitol inhibits myocardial apoptosis involving decreased hydroxyl radical production and Bax expression in an ischaemia/reperfusion rabbit heart. Br J Pharmacol, 2004; 142(6): 983-990. doi: 10.1038/sj.bjp.0705863
|
[114] |
Tan K, Tesar C, Wilton R, et al. Interaction of antidiabetic alphaglucosidase inhibitors and gut bacteria alpha-glucosidase. Protein Sci, 2018; 27(8): 1498-1508. doi: 10.1002/pro.3444
|
[115] |
Kojima Y, Kimura T, Nakagawa K, et al. Effects of mulberry leaf extract rich in 1-deoxynojirimycin on blood lipid profiles in humans. J Clin Biochem Nutr, 2010; 47(2): 155-161. doi: 10.3164/jcbn.10-53
|
[116] |
Silva C H, Taft C A. Computer-aided molecular design of novel glucosidase inhibitors for AIDS treatment. J Biomol Struct Dyn, 2004; 22(1): 59-63. doi: 10.1080/07391102.2004.10506981
|
[117] |
Wang R J, Yang C H, Hu M L. 1-Deoxynojirimycin inhibits metastasis of B16F10 melanoma cells by attenuating the activity and expression of matrix metalloproteinases-2 and -9 and altering cell surface glycosylation. J Agric Food Chem, 2010; 58(16): 8988-8993. doi: 10.1021/jf101401b
|
[118] |
American Diabetes Association. Standards of medical care in diabetes——2012. Diabetes Care 35(Suppl 1): S11-S63.
|
[119] |
Capuano A, Sportiello L, Maiorino M I, et al. Dipeptidyl peptidase-4 inhibitors in type 2 diabetes therapy——focus on alogliptin. Drug Des Devel Ther, 2013; 7: 989-1001.
|
[120] |
Rizzo M R, Barbieri M, Marfella R, et al. Response to comment on: Rizzo et al. Reduction of oxidative stress and inflammation by blunting daily acute glucose fluctuations in patients with type 2 diabetes: role of dipeptidyl peptidase-Ⅳ inhibition. Diabetes Care, 2012; 35: 2076-2082.
|
[121] |
Lee S, Lee H, Kim Y, et al. Effect of DPP-Ⅳ inhibitors on glycemic variability in patients with T2DM: a systematic review and meta-analysis. Sci Rep, 2019; 9(1): 13296. doi: 10.1038/s41598-019-49803-9
|
[122] |
Drucker D J, Nauck M A. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 2006; 368(9548): 1696-1705. doi: 10.1016/S0140-6736(06)69705-5
|
[123] |
Drucker D J. The biology of incretin hormones. Cell Metab, 2006; 3(3): 153-165. doi: 10.1016/j.cmet.2006.01.004
|
[124] |
Inaba W, Mizukami H, Kamata K, et al. Effects of long-term treatment with the dipeptidyl peptidase-4 inhibitor vildagliptin on islet endocrine cells in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol, 2012; 691(1-3): 297-306. doi: 10.1016/j.ejphar.2012.07.030
|
[125] |
Kröller-Schön S, Knorr M, Hausding M, et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res, 2012; 96(1): 140-149. doi: 10.1093/cvr/cvs246
|
[126] |
Ye Y M, Keyes K T, Zhang C F, et al. The myocardial infarct sizelimiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol, 2010; 298(5): H1454-H1465. doi: 10.1152/ajpheart.00867.2009
|
[127] |
Read P A, Khan F Z, Heck P M, et al. DPP-4 inhibition by sitagliptin improves the myocardial response to dobutamine stress and mitigates stunning in a pilot study of patients with coronary artery disease. Circ Cardiovasc Imaging, 2010; 3(2): 195-201.
|
[128] |
Yilmaz Y, Atug O, Yonal O, et al. Dipeptidyl peptidase Ⅳ inhibitors: therapeutic potential in nonalcoholic fatty liver disease. Med Sci Monit 2009; 15(4): HY1-5.
|
[129] |
Liao X Y, Song L Y, Zeng B H, et al. Alteration of gut microbiota induced by DPP-4i treatment improves glucose homeostasis. EBioMedicine, 2019; 44: 665-674. doi: 10.1016/j.ebiom.2019.03.057
|
[130] |
Shah Z, Kampfrath T, Deiuliis J A, et al. Long-term dipeptidylpeptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation, 2011; 124(21): 2338-2349. doi: 10.1161/CIRCULATIONAHA.111.041418
|
[131] |
Salaga M, Binienda A, Draczkowski P, et al. Novel peptide inhibitor of dipeptidyl peptidase Ⅳ (Tyr-Pro-D-Ala-NH2) with anti-inflammatory activity in the mouse models of colitis. Peptides, 2018; 108: 34-45. doi: 10.1016/j.peptides.2018.08.011
|
[132] |
Zhang X W, Zhang Z W, Li M Z, et al. Potential role of dipeptidyl peptidase-4 inhibitors in atrial fibrillation. Int J Cardiol, 2016; 207: 46-47.
|
[133] |
Green J B, Bethel M A, Armstrong P W, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2015; 373(3): 232-242. doi: 10.1056/NEJMoa1501352
|
[134] |
Rosenstock J, Perkovic V, Johansen O E, et al. Effect of linagliptin vs placebo on major cardiovascular events in adults with type 2 diabetes and high cardiovascular and renal risk: the CARMELINA randomized clinical trial. JAMA, 2019; 321(1): 69-79. doi: 10.1001/jama.2018.18269
|
[135] |
Mascolo A, Rafaniello C, Sportiello L, et al. Dipeptidyl peptidase (DPP)-4 inhibitor-induced arthritis/arthralgia: a review of clinical cases. Drug Saf, 2016; 39(5): 401-407. doi: 10.1007/s40264-016-0399-8
|
[136] |
De S, Banerjee S, Kumar S K A, et al. Critical role of dipeptidyl peptidase Ⅳ: a therapeutic target for diabetes and cancer. Mini Rev Med Chem, 2019; 19(2): 88-97.
|
[137] |
Amritha C A, Kumaravelu P, Chellathai D D. Evaluation of anti cancer effects of DPP-4 inhibitors in colon cancer-an invitro study. J Clin Diagn Res, 2015; 9(12): FC14-16.
|
[138] |
Pandey J, Tamrakar A K. SGLT2 inhibitors for the treatment of diabetes: a patent review (2013-2018). Expert Opin Ther Pat, 2019; 29(5): 369-384. doi: 10.1080/13543776.2019.1612879
|
[139] |
Min S H, Yoon J H, Hahn S, et al. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis. Diabetes Metab Res Rev, 2017; 33(1): 27155214.
|
[140] |
Sonne D P, Hemmingsen B. Comment on American diabetes association. Standards of medical care in diabetes-2017. Diabetes Care, 2017; 40(Suppl. 1): S1-S135. .
|
[141] |
Verma S, McMurray J J V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. Diabetologia, 2018; 61(10): 2108-2117. doi: 10.1007/s00125-018-4670-7
|
[142] |
Mangoni A A, Mircoli L, Giannattasio C, et al. Effect of sympathectomy on mechanical properties of common carotid and femoral arteries. Hypertension, 1997; 30(5): 1085-1088. doi: 10.1161/01.HYP.30.5.1085
|
[143] |
Hijmering M L, Stroes E S G, Olijhoek J, et al. Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol, 2002; 39(4): 683-688. doi: 10.1016/S0735-1097(01)01786-7
|
[144] |
DiBona G F. Sympathetic nervous system and the kidney in hypertension. Curr Opin Nephrol Hypertens, 2002; 11(2): 197-200. doi: 10.1097/00041552-200203000-00011
|
[145] |
Lytvyn Y, Bjornstad P, Udell J A, et al. Sodium glucose cotransporter-2 inhibition in heart failure: potential mechanisms, clinical applications, and summary of clinical trials. Circulation, 2017; 136(17): 1643-1658. doi: 10.1161/CIRCULATIONAHA.117.030012
|
[146] |
Han J H, Oh T J, Lee G, et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE (-/-) mice fed a western diet. Diabetologia, 2017; 60(2): 364-376. doi: 10.1007/s00125-016-4158-2
|
[147] |
Zelniker T A, Braunwald E. Cardiac and renal effects of sodiumglucose co-transporter 2 inhibitors in diabetes: JACC state-of-the-art review. J Am Coll Cardiol, 2018; 72(15): 1845-1855. doi: 10.1016/j.jacc.2018.06.040
|
[148] |
Liu B, Wang Y, Zhang Y, et al. Mechanisms of protective effects of SGLT2 inhibitors in cardiovascular disease and renal dysfunction. Curr Top Med Chem, 2019; 19(20): 1818-1849. doi: 10.2174/1568026619666190828161409
|
[149] |
Maejima Y. SGLT2 inhibitors play a salutary role in heart failure via modulation of the mitochondrial function. Front Cardiovasc Med, 2019; 6: 186.
|
[150] |
Ishibashi Y, Matsui T, Yamagishi S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm Metab Res, 2016; 48(3): 191-195.
|
[151] |
Zinman B, Wanner C, Lachin J M, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med, 2015; 373(22): 2117-2128. doi: 10.1056/NEJMoa1504720
|
[152] |
Kawanami D, Matoba K, Takeda Y, et al. SGLT2 Inhibitors as a therapeutic option for diabetic nephropathy. Int J Mol Sci, 2017; 18(5): 1083. doi: 10.3390/ijms18051083
|
[153] |
Terami N, Ogawa D, Tachibana H, et al. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One 9, 2014; 9(6): e100777. doi: 10.1371/journal.pone.0100777
|
[154] |
Lee Y H, Kim S H, Kang J M, et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am J Physiol Renal Physiol, 2019; 317(4): F767-F780. doi: 10.1152/ajprenal.00565.2018
|
[155] |
Wang X X, Levi J, Lu Y H, et al. SGLT2 protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation, inflammation, and the development of nephropathy in diabetic mice. J Biol Chem, 2017; 292(13): 5335-5348. doi: 10.1074/jbc.M117.779520
|
[156] |
Shibuya T, Fushimi N, Kawai M, et al. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study. Diabetes Obes Metab, 2018; 20(2): 438-442. doi: 10.1111/dom.13061
|
[157] |
Leiter L A, Forst T, Polidori D, et al. Effect of canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab, 2016; 42(1): 25-32. doi: 10.1016/j.diabet.2015.10.003
|
[158] |
Komiya C, Tsuchiya K, Shiba K, et al. Ipragliflozin improves hepatic steatosis in obese mice and liver dysfunction in type 2 diabetic patients irrespective of body weight reduction. PLoS One, 2016; 11(3): e0151511. doi: 10.1371/journal.pone.0151511
|
[159] |
Prattichizzo F, Nigris V D, Spiga R, et al. Inflammageing and metaflammation: The Yin and Yang of type 2 diabetes. Ageing Res Rev, 2018; 41: 1-17. doi: 10.1016/j.arr.2017.10.003
|
[160] |
Libby P. Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol, 2012; 32(9): 2045-2051. doi: 10.1161/ATVBAHA.108.179705
|
[161] |
Karasawa T, Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J Atheroscler Thromb, 2017; 24(5): 443-451. doi: 10.5551/jat.RV17001
|
[162] |
Garvey W T, Van Gaal L, Leiter L A, et al. Effects of canagliflozin versus glimepiride on adipokines and inflammatory biomarkers in type 2 diabetes. Metabolism, 2018; 85: 32-37. doi: 10.1016/j.metabol.2018.02.002
|
[163] |
Xu L, Ota T. Emerging roles of SGLT2 inhibitors in obesity and insulin resistance: Focus on fat browning and macrophage polarization. Adipocyte, 2018; 7(2): 121-128.
|
[164] |
Packer M. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis. Diabetes Obes Metab, 2018; 20(6): 1361-1366. doi: 10.1111/dom.13229
|
[165] |
Diaz-Rodríguez E, Agra R M, Fernández Á L, et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res, 2018; 114(2): 336-346. doi: 10.1093/cvr/cvx186
|
[166] |
Ye Y, Bajaj M, Yang H C, et al. SGLT-2 Inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with saxagliptin, a DPP4 inhibitor. Cardiovasc Drugs Ther, 2017; 31(2): 119-132. doi: 10.1007/s10557-017-6725-2
|
[167] |
Lee T M, Chang N C, Lin S Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med, 2017; 104: 298-310. doi: 10.1016/j.freeradbiomed.2017.01.035
|
[168] |
Naznin F, Sakoda H, Okada T, et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol, 2017; 794: 37-44. doi: 10.1016/j.ejphar.2016.11.028
|
[169] |
Komatsu S, Nomiyama T, Numata T, et al. SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation. Endocr J, 2020; 67(1): 99-106. doi: 10.1507/endocrj.EJ19-0428
|
[170] |
Guo M, Ding J Y, Li J S, et al. SGLT2 inhibitors and risk of stroke in patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab, 2018; 20(8): 1977-1982. doi: 10.1111/dom.13295
|
[171] |
Tentolouris A, Vlachakis P, Tzeravini E, et al. SGLT2 inhibitors: a review of their antidiabetic and cardioprotective effects. Int J Environ Res Public Health, 2019; 16(16): 2965. doi: 10.3390/ijerph16162965
|
[172] |
Yabe D, Nishikino R, Kaneko M, et al. Short-term impacts of sodium/glucose co-transporter 2 inhibitors in Japanese clinical practice: considerations for their appropriate use to avoid serious adverse events. Expert Opin Drug Saf, 2015; 14(6): 795-800. doi: 10.1517/14740338.2015.1034105
|
[173] |
Lee Y S, Jun H S. Anti-inflammatory effects of GLP-1-based therapies beyond glucose control. Mediators Inflamm, 2016; 2016: 3094642.
|
[174] |
Inzucchi S E, Bergenstal R M, Buse J B, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2015; 38(1): 140-149. doi: 10.2337/dc14-2441
|
[175] |
Drucker D J. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab, 2018; 27(4): 740-756. doi: 10.1016/j.cmet.2018.03.001
|
[176] |
Gentilella R, Pechtner V, Corcos A, et al. Glucagon-like peptide-1 receptor agonists in type 2 diabetes treatment: are they all the same? Diabetes Metab Res Rev, 2019; 35(1): e3070. doi: 10.1002/dmrr.3070
|
[177] |
Arden C. A role for Glucagon-like peptide-1 in the regulation of beta-cell autophagy. Peptides, 2018; 100: 85-93. doi: 10.1016/j.peptides.2017.12.002
|
[178] |
Zummo F P, Cullen K S, Honkanen-Scott M, et al. Glucagonlike peptide 1 protects pancreatic beta-cells from death by increasing autophagic flux and restoring lysosomal function. Diabetes, 2017; 66(5): 1272-1285. doi: 10.2337/db16-1009
|
[179] |
Lim S W, Jin L, Jin J, et al. Effect of exendin-4 on autophagy clearance in beta cell of rats with tacrolimus-induced diabetes mellitus. Sci Rep, 2016; 6: 29921. doi: 10.1038/srep29921
|
[180] |
Dokken B B, La Bonte L R, Davis-Gorman G, et al. Glucagon-like peptide-1 (GLP-1), immediately prior to reperfusion, decreases neutrophil activation and reduces myocardial infarct size in rodents. Horm Metab Res, 2011; 43(5): 300-305. doi: 10.1055/s-0031-1271777
|
[181] |
Tate M, Robinson E, Green B D, et al. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol, 2016; 111(1): 1. doi: 10.1007/s00395-015-0518-1
|
[182] |
Gaspari T, Brdar M, Lee H W, et al. Molecular and cellular mechanisms of glucagon-like peptide-1 receptor agonist-mediated attenuation of cardiac fibrosis. Diab Vasc Dis Res, 2016; 13(1): 56-68. doi: 10.1177/1479164115605000
|
[183] |
Heppner K M, Perez-Tilve D. GLP-1 based therapeutics: simultaneously combating T2DM and obesity. Front Neurosci, 2015; 9: 92.
|
[184] |
Perry T, Lahiri D K, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by abeta and iron. J Neurosci Res, 2003; 72(5): 603-612. doi: 10.1002/jnr.10611
|
[185] |
de Graaf C, Donnelly D, Wootten D, et al. Glucagon-like peptide-1 and its class B G protein-coupled receptors: a long march to therapeutic successes. Pharmacol Rev, 2016; 68(4): 954-1013. doi: 10.1124/pr.115.011395
|
[186] |
Kodera R, Shikata K, Kataoka H U, et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia, 2011; 54(4): 965-978. doi: 10.1007/s00125-010-2028-x
|
[187] |
Hsieh J, Longuet C, Baker C L, et al. The glucagon-like peptide 1 receptor is essential for postprandial lipoprotein synthesis and secretion in hamsters and mice. Diabetologia, 2010; 53(3): 552-561. doi: 10.1007/s00125-009-1611-5
|
[188] |
Xiao C, Bandsma R H, Dash S, et al. Exenatide, a glucagonlike peptide-1 receptor agonist, acutely inhibits intestinal lipoprotein production in healthy humans. Arterioscler Thromb Vasc Biol, 2012; 32(6): 1513-1519. doi: 10.1161/ATVBAHA.112.246207
|
[189] |
Armstrong M J, Gaunt P, Aithal G P, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet, 2016; 387(10019): 679-690. doi: 10.1016/S0140-6736(15)00803-X
|
[190] |
Gou S, Zhu T, Wang W, et al. Glucagon like peptide-1 attenuates bleomycin-induced pulmonary fibrosis, involving the inactivation of NFkappaB in mice. Int Immunopharmacol, 2014; 22(2): 498-504. doi: 10.1016/j.intimp.2014.07.010
|
[191] |
Faillie J L, Yu O H, Yin H, et al. Association of bile duct and gallbladder diseases with the use of incretin-based drugs in patients with type 2 diabetes mellitus. JAMA Intern Med, 2016; 176(10): 1474-1481. doi: 10.1001/jamainternmed.2016.1531
|
[192] |
Holman R R, Bethel M A, Mentz R J, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2017; 377(13): 1228-1239. doi: 10.1056/NEJMoa1612917
|
[193] |
Marso S P, Daniels G H, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med, 2016; 375(4): 311-322. doi: 10.1056/NEJMoa1603827
|
[194] |
Fullerton B, Siebenhofer A, Jeitler K, et al. Short-acting insulin analogues versus regular human insulin for adult, non-pregnant persons with type 2 diabetes mellitus. Cochrane Database Syst Rev, 2018; 12(12): CD013228.
|
[195] |
Semlitsch T, Engler J, Siebenhofer A, et al. (Ultra-)long-acting insulin analogues versus NPH insulin (human isophane insulin) for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev, 2020; 11(11): CD005613.
|
[196] |
Kruger D F, Novak L M. Role of ultrafast-acting insulin analogues in the management of diabetes. J Am Assoc Nurse Pract, 2019; 31(9): 537-548. doi: 10.1097/JXX.0000000000000261
|
[197] |
Hussain H, Green I R, Abbas G, et al. Protein tyrosine phosphatase 1B (PTP1B) inhibitors as potential anti-diabetes agents: patent review (2015-2018). Expert Opin Ther Pat, 2019; 29(9): 689-702. doi: 10.1080/13543776.2019.1655542
|
[198] |
Eleftheriou P, Geronikaki A, Petrou A. PTP1b inhibition, a promising approach for the treatment of diabetes type Ⅱ. Curr Top Med Chem, 2019; 19(4): 246-263. doi: 10.2174/1568026619666190201152153
|
[199] |
Tamrakar A K, Maurya C K, Rai A K. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011-2014). Expert Opin Ther Pat, 2014; 24(10): 1101-1115. doi: 10.1517/13543776.2014.947268
|
[200] |
Wang L J, Jiang B, Wu N, et al. Small molecules as potent protein tyrosine phosphatase 1B (PTP1B) inhibitors documented in patents from 2009 to 2013. Mini Rev Med Chem, 2015; 15: 104-122 doi: 10.2174/1389557515666150203144339
|
[201] |
Verma M, Gupta S J, Chaudhary A, et al. Protein tyrosine phosphatase 1B inhibitors as antidiabetic agents-A brief review. Bioorg Chem, 2016; 70: 267-283.
|
[202] |
Johnson T O, Ermolieff J, Jirousek M R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat Rev Drug Discov, 2002; 1(9): 696-709. doi: 10.1038/nrd895
|
[203] |
Duarte A M, Guarino M P, Barroso S, et al. Phytopharmacological strategies in the management of type 2 diabetes mellitus. Foods, 2020; 9(3): 271. doi: 10.3390/foods9030271
|
[204] |
Grewal A S, Bhardwaj S, Pandita D, et al. Updates on aldose reductase inhibitors for management of diabetic complications and nondiabetic diseases. Mini Rev Med Chem, 2016; 16(2): 120-162.
|
[205] |
Quattrini L, La Motta C. Aldose reductase inhibitors: 2013-present. Expert Opin Ther Pat, 2009; 29(3): 199-213.
|
[206] |
Kawanishi K, Ueda H, Moriyasu M. Aldose reductase inhibitors from the nature. Curr Med Chem, 2003; 10(15): 1353-1374. doi: 10.2174/0929867033457304
|
[207] |
Oka M, Kato N. Aldose reductase inhibitors. J Enzyme Inhib, 2001; 16(6): 465-473. doi: 10.1080/14756360127568
|
[208] |
Ramunno A, Cosconati S, Sartini S, et al. Progresses in the pursuit of aldose reductase inhibitors: the structure-based lead optimization step. Eur J Med Chem, 2012; 51: 216-226. doi: 10.1016/j.ejmech.2012.02.045
|
[209] |
Jedziniak J A, Kinoshita J H. Activators and inhibitors of lens aldose reductase. Invest Ophthalmol, 1971; 10(5): 357-366.
|
[210] |
Kousaxidis A, Petrou A, Lavrentaki V, et al. Aldose reductase and protein tyrosine phosphatase 1B inhibitors as a promising therapeutic approach for diabetes mellitus. Eur J Med Chem, 2020; 207: 112742. doi: 10.1016/j.ejmech.2020.112742
|
[211] |
Persaud S J. Islet G-protein coupled receptors: therapeutic potential for diabetes. Curr Opin Pharmacol, 2017; 37: 24-28. doi: 10.1016/j.coph.2017.08.001
|
[212] |
Riddy D M, Delerive P, Summers R J, et al. G Protein-Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacol Rev 2018; 70(1): 39-67. doi: 10.1124/pr.117.014373
|
[213] |
Sebastiani G, Ceccarelli E, Castagna M G, et al. G-protein-coupled receptors (GPCRs) in the treatment of diabetes: Current view and future perspectives. Best Pract Res Clin Endocrinol Metab, 2018; 32(2): 201-213. doi: 10.1016/j.beem.2018.02.005
|
[214] |
Hoque M, Ali S, Hoda M. Current status of G-protein coupled receptors as potential targets against type 2 diabetes mellitus. Int J Biol Macromol, 2018; 118(Pt 8): 2237-2244.
|
[215] |
Reimann F, Gribble F M. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia, 2006; 59(2): 229-233.
|
[216] |
Ritter K, Buning C, Halland N, et al. G Protein-Coupled Receptor 119 (GPR119) agonists for the treatment of diabetes: recent progress and prevailing challenges. J Med Chem, 2016; 59(8): 3579-3592. doi: 10.1021/acs.jmedchem.5b01198
|
[217] |
Mancini A D, Poitout V. GPR40 agonists for the treatment of type 2 diabetes: life after 'TAKing' a hit. Diabetes Obes Metab, 2015; 17(7): 622-629. doi: 10.1111/dom.12442
|
[218] |
Katz L B, Gambale J J, Rothenberg P L, et al. Effects of JNJ-38431055, a novel GPR119 receptor agonist, in randomized, doubleblind, placebo-controlled studies in subjects with type 2 diabetes. Diabetes Obes Metab, 2012; 14(8): 709-716. doi: 10.1111/j.1463-1326.2012.01587.x
|
[219] |
Kim Y, Keogh J B, Clifton P M. Polyphenols and glycemic control. Nutrients, 2016; 8(1): 17. doi: 10.3390/nu8010017
|
[220] |
Hung H Y, Qian K, Morris-Natschke S L, et al. Recent discovery of plant-derived anti-diabetic natural products. Nat Prod Rep, 2012; 29(5): 580-606. doi: 10.1039/c2np00074a
|
[221] |
Öztürk E, Arslan A K K, Yerer M B, et al. Resveratrol and diabetes: A critical review of clinical studies. Biomed Pharmacother, 2017; 95: 230-234. doi: 10.1016/j.biopha.2017.08.070
|
[222] |
Szkudelski T, Szkudelska K. Resveratrol and diabetes: from animal to human studies. Biochim Biophys Acta, 2015; 1852(6): 1145-1154. doi: 10.1016/j.bbadis.2014.10.013
|
[223] |
Timmers S, de Ligt M, Phielix E, et al. Resveratrol as add-on therapy in subjects with well-controlled type 2 diabetes: a randomized controlled trial. Diabetes Care, 2016; 39(12): 2211-2217. doi: 10.2337/dc16-0499
|
[224] |
Jeyaraman M M, Al-Yousif N S H, Singh Mann A, et al. Resveratrol for adults with type 2 diabetes mellitus. Cochrane Database Syst Rev, 2020; 1(1): CD011919.
|
[225] |
Pivari F, Mingione A, Brasacchio C, et al. Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 2019; 11(8): 1837. doi: 10.3390/nu11081837
|
[226] |
Nabavi S F, Thiagarajan R, Rastrelli L, et al. Curcumin: a natural product for diabetes and its complications. Curr Top Med Chem, 2015; 15(23): 2445-2455. doi: 10.2174/1568026615666150619142519
|
[227] |
Chuengsamarn S, Rattanamongkolgul S, Luechapudiporn R, et al. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012; 35(11): 2121-2127. doi: 10.2337/dc12-0116
|
[228] |
Neerati P, Devde R, Gangi A K. Evaluation of the effect of curcumin capsules on glyburide therapy in patients with type-2 diabetes mellitus. Phytother Res, 2014; 28(12): 1796-1800. doi: 10.1002/ptr.5201
|
[229] |
Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism, 2008; 57(5): 712-717. doi: 10.1016/j.metabol.2008.01.013
|
[230] |
Lan J, Zhao Y Y, Dong F X, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol, 2015; 161: 69-81. doi: 10.1016/j.jep.2014.09.049
|
[231] |
Liang Y, Xu X J, Yin M J, et al. Effects of berberine on blood glucose in patients with type 2 diabetes mellitus: a systematic literature review and a meta-analysis. Endocr J, 2019; 66(1): 51-63.
|
[232] |
Zhang H, Wei J, Xue R, et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism, 2010; 59(2): 285-292. doi: 10.1016/j.metabol.2009.07.029
|
[233] |
Emerging Risk Factors Collaboration, Di Angelantonio E, Kaptoge S, et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA, 2015; 314(1): 52-60. doi: 10.1001/jama.2015.7008
|
[234] |
Dinesh Shah A, Langenberg C, Rapsomaniki E, et al. Type 2 diabetes and incidence of a wide range of cardiovascular diseases: a cohort study in 1.9 million people. Lancet, 2015; 385(Suppl 1): S86.
|
[235] |
Mannino G C, Andreozzi F, Sesti G. Pharmacogenetics of type 2 diabetes mellitus, the route toward tailored medicine. Diabetes Metab Res Rev, 2019; 35(3): e3109. doi: 10.1002/dmrr.3109
|
[236] |
Eng C, Kramer C K, Zinman B, et al. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet, 2014; 384(9961): 2228-2234. doi: 10.1016/S0140-6736(14)61335-0
|
[237] |
Gao H, Xiao J N, Sun Q, et al. A single decoy oligodeoxynucleotides targeting multiple oncoproteins produces strong anticancer effects. Mol Pharmacol, 2006; 70(5): 1621-1629. doi: 10.1124/mol.106.024273
|
[238] |
Lu Y, Xiao J N, Lin H X, et al. A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res, 2009; 37(3): e24. doi: 10.1093/nar/gkn1053
|
[239] |
Wang Z G. The concept of multiple-target anti-miRNA antisense oligonucleotide technology. Methods Mol Biol, 2011; 676: 51-57.
|
[240] |
Roth B L, Sheffler D J, Kroeze W K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov, 2004; 3(4): 353-359. doi: 10.1038/nrd1346
|
[241] |
Koutsouleris N, Meisenzahl EM, Borgwardt S, et al. Individualized differential diagnosis of schizophrenia and mood disorders using neuroanatomical biomarkers. Brain, 2015; 138(Pt 7): 2059-2073.
|
[242] |
Schwartz S S, Epstein S, Corkey B E, et al. The time is right for a new classification system for diabetes: rationale and implications of the betacell-centric classification schema. Diabetes Care, 2016; 39(2): 179-186. doi: 10.2337/dc15-1585
|