| Citation: | Shima Tang, Fen Zhang, Qiuhong Liu, Lanjuan Li. Corona virus disease 2019-associated liver injury in cold regions[J]. Frigid Zone Medicine, 2022, 2(4): 193-199. doi: 10.2478/fzm-2022-0026 | 
	                | [1] | 
					 Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395(10223): 497-506. doi:  10.1016/S0140-6736(20)30183-5 
						
					 | 
			
| [2] | 
					 Medicine JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). 2022. https://coronavirus.jhu.edu/map.html. Accessed on May 20, 2022. 
						
					 | 
			
| [3] | 
					 Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature, 2020; 579(7798): 265-269. doi:  10.1038/s41586-020-2008-3 
						
					 | 
			
| [4] | 
					 Zhou P, Yang X L, Wang X G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020; 579(7798): 270-273. doi:  10.1038/s41586-020-2012-7 
						
					 | 
			
| [5] | 
					 Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med, 2020; 382(8): 727-733. doi:  10.1056/NEJMoa2001017 
						
					 | 
			
| [6] | 
					 Wu J, Li W, Shi X, et al. Early antiviral treatment contributes to alleviate the severity and improve the prognosis of patients with novel coronavirus disease (COVID-19). J Intern Med, 2020; 288(1): 128-138. doi:  10.1111/joim.13063 
						
					 | 
			
| [7] | 
					 World meter. COVID-19 CORONAVIRUS PANDEMIC. https://www.worldometers.info/coronavirus/. Accessed on May 23, 2022. 
						
					 | 
			
| [8] | 
					 Icard P, Simula L, Rei J, et al. On the footsteps of Hippocrates, Sanctorius and Harvey to better understand the influence of cold on the occurrence of COVID-19 in European countries in 2020. Biochimie, 2021; 191: 164-171. doi:  10.1016/j.biochi.2021.09.009 
						
					 | 
			
| [9] | 
					 Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020; 395(10224): 565-574. doi:  10.1016/S0140-6736(20)30251-8 
						
					 | 
			
| [10] | 
					 Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptorbinding domain bound to the ACE2 receptor. Nature, 2020; 581(7807): 215-220. doi:  10.1038/s41586-020-2180-5 
						
					 | 
			
| [11] | 
					 Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020; 181(2): 271-280. e8. doi:  10.1016/j.cell.2020.02.052 
						
					 | 
			
| [12] | 
					 Walls A C, Park Y J, Tortorici M A, et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020; 181(2): 281-292. e6. doi:  10.1016/j.cell.2020.02.058 
						
					 | 
			
| [13] | 
					 Xie M, Chen Q. Insight into 2019 novel coronavirus - An updated interim review and lessons from SARS-CoV and MERS-CoV. Int J Infect Dis, 2020; 94: 119-124. doi:  10.1016/j.ijid.2020.03.071 
						
					 | 
			
| [14] | 
					 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020; 395(10223): 507-513. doi:  10.1016/S0140-6736(20)30211-7 
						
					 | 
			
| [15] | 
					 Guan W J, Ni Z Y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 2020; 382(18): 1708-1720. doi:  10.1056/NEJMoa2002032 
						
					 | 
			
| [16] | 
					 Wu J, Liu J, Zhao X, et al. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clin Infect Dis, 2020; 71(15): 706-712. doi:  10.1093/cid/ciaa199 
						
					 | 
			
| [17] | 
					 Recalcati S. Cutaneous manifestations in COVID-19: a first perspective. Br J Dermatol, 2020; 182(6): 1477-1478.198 FRIGID ZONE MEDICINE doi:  10.1111/bjd.19011 
						
					 | 
			
| [18] | 
					 Wu Z Y, McGoogan J M. Characteristics ofand Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020; 323(13): 1239-1242. doi:  10.1001/jama.2020.2648 
						
					 | 
			
| [19] | 
					 Marjot T, Webb G J, Barritt A St, et al. COVID-19 and liver disease: mechanistic and clinical perspectives. Nat Rev Gastroenterol Hepatol, 2021; 18(5): 348-364. doi:  10.1038/s41575-021-00426-4 
						
					 | 
			
| [20] | 
					 Wu J, Song S, Cao H C, et al. Liver diseases in COVID-19: Etiology, treatment and prognosis. World J Gastroenterol, 2020; 26(19): 2286-2293. doi:  10.3748/wjg.v26.i19.2286 
						
					 | 
			
| [21] | 
					 Kulkarni A V, Kumar P, Tevethia H V, et al. Systematic review with meta-analysis: liver manifestations and outcomes in COVID-19. Aliment Pharmacol Ther, 2020; 52(4): 584-599. doi:  10.1111/apt.15916 
						
					 | 
			
| [22] | 
					 Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int, 2020; 40(5): 998-1004. doi:  10.1111/liv.14435 
						
					 | 
			
| [23] | 
					 Jothimani D, Venugopal R, Abedin M F, et al. COVID-19 and the liver. J Hepatol, 2020; 73(5): 1231-1240. doi:  10.1016/j.jhep.2020.06.006 
						
					 | 
			
| [24] | 
					 Cai Q, Huang D, Yu H, et al. COVID-19: Abnormal liver function tests. J Hepatol, 2020; 73(3): 566-574. doi:  10.1016/j.jhep.2020.04.006 
						
					 | 
			
| [25] | 
					 Ding Z Y, Li G X, Chen L, et al. Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J Hepatol, 2021; 74(6): 1295-1302. doi:  10.1016/j.jhep.2020.12.012 
						
					 | 
			
| [26] | 
					 Weber S, Hellmuth J C, Scherer C, et al. Liver function test abnormalities at hospital admission are associated with severe course of SARS-CoV-2 infection: a prospective cohort study. Gut, 2021; 70(10): 1925-1932. doi:  10.1136/gutjnl-2020-323800 
						
					 | 
			
| [27] | 
					 Yip T C, Lui G C, Wong V W, et al. Liver injury is independently associated with adverse clinical outcomes in patients with COVID-19. Gut, 2021; 70(4): 733-742. doi:  10.1136/gutjnl-2020-321726 
						
					 | 
			
| [28] | 
					 Mao R, Qiu Y, He J S, et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol, 2020; 5(7): 667-678. doi:  10.1016/S2468-1253(20)30126-6 
						
					 | 
			
| [29] | 
					 Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ, 2020; 368: m1091. 
						
					 | 
			
| [30] | 
					 Ponziani F R, Del Zompo F, Nesci A, et al. Liver involvement is not associated with mortality: results from a large cohort of SARS-CoV-2-positive patients. Aliment Pharmacol Ther, 2020; 52(6): 1060-1068. 
						
					 | 
			
| [31] | 
					 Zhang Y, Zheng L, Liu L, et al. Liver impairment in COVID-19 patients: A retrospective analysis of 115 cases from a single centre in Wuhan city, China. Liver Int, 2020; 40(9): 2095-2103. doi:  10.1111/liv.14455 
						
					 | 
			
| [32] | 
					 Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a singlecentered, retrospective, observational study. Lancet Respir Med, 2020; 8(5): 475-481. doi:  10.1016/S2213-2600(20)30079-5 
						
					 | 
			
| [33] | 
					 Xu X W, Wu X X, Jiang X G, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. BMJ, 2020; 368: m606. 
						
					 | 
			
| [34] | 
					 Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis, 2020; 20(4): 425-434. doi:  10.1016/S1473-3099(20)30086-4 
						
					 | 
			
| [35] | 
					 Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020; 323(11): 1061-1069. doi:  10.1001/jama.2020.1585 
						
					 | 
			
| [36] | 
					 Yang H Y, Jin B, Mao Y L. Liver injury in COVID-19: What do we know now? Hepatobiliary Pancreat Dis Int, 2020; 19(5): 407-408. doi:  10.1016/j.hbpd.2020.07.009 
						
					 | 
			
| [37] | 
					 Lei F, Liu Y M, Zhou F, et al. Longitudinal association between markers of liver injury and mortality in covid-19 in china. Hepatology, 2020; 72(2): 389-398. doi:  10.1002/hep.31301 
						
					 | 
			
| [38] | 
					 Richardson S, Hirsch J S, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA, 2020; 323(20): 2052-2059. doi:  10.1001/jama.2020.6775 
						
					 | 
			
| [39] | 
					 Ding Y, He L, Zhang Q, et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol, 2004; 203(2): 622-630. doi:  10.1002/path.1560 
						
					 | 
			
| [40] | 
					 Sonzogni A, Previtali G, Seghezzi M, et al. Liver histopathology in severe COVID 19 respiratory failure is suggestive of vascular alterations. Liver Int, 2020; 40(9): 2110-2116. doi:  10.1111/liv.14601 
						
					 | 
			
| [41] | 
					 Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol, 2020; 73(4): 807-816. doi:  10.1016/j.jhep.2020.05.002 
						
					 | 
			
| [42] | 
					 Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am J Respir Crit Care Med, 2020; 202(5): 756-759. doi:  10.1164/rccm.202001-0179LE 
						
					 | 
			
| [43] | 
					 Hikmet F, Mear L, Edvinsson A, et al. The protein expression profile of ACE2 in human tissues. Mol Syst Biol, 2020; 16(7): e9610. 
						
					 | 
			
| [44] | 
					 Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol, 2004; 203(2): 631-637. doi:  10.1002/path.1570 
						
					 | 
			
| [45] | 
					 Chai X, Hu L, Zhang Y, et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv, 2020. doi: 10.1101/2020.02.03.931766. 
						
					 | 
			
| [46] | 
					 Zhao B, Ni C, Gao R, et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell, 2020; 11(10): 771-775. doi:  10.1007/s13238-020-00718-6 
						
					 | 
			
| [47] | 
					 Zhang J J, Dong X, Cao Y Y, et al. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy, 2020; 75(7): 1730-1741. doi:  10.1111/all.14238 
						
					 | 
			
| [48] | 
					 Zhou MWY. A precision medicine approach to managing Wuhan Coronavirus. Precis Clin Med, 2020; 4(3): 14-21. 
						
					 | 
			
| [49] | 
					 Song Y, Liu P, Shi X L, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut, 2020; 69(6): 1143-1144. doi:  10.1136/gutjnl-2020-320891 
						
					 | 
			
| [50] | 
					 Ma C, Cong Y, Zhang H. COVID-19 and the digestive system. Am J Gastroenterol, 2020; 115(7): 1003-1006. doi:  10.14309/ajg.0000000000000691 
						
					 | 
			
| [51] | 
					 Zhang H, Li H B, Lyu J R, et al. Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. Int J Infect Dis, 2020; 96: 19-24. doi:  10.1016/j.ijid.2020.04.027 
						
					 | 
			
| [52] | 
					 Nardo A D, Schneeweiss-Gleixner M, Bakail M, et al. Pathophysiological mechanisms of liver injury in COVID-19. Liver Int, 2021; 41(1): 20-32. doi:  10.1111/liv.14730 
						
					 | 
			
| [53] | 
					 William M. Lee MD. Drug-Induced Hepatotoxicity. N Engl J Med, 1995; 333: 17. 
						
					 | 
			
| [54] | 
					 Qiu H, Tong Z, Ma P, et al. Intensive care during the coronavirus epidemic. Intensive Care Med, 2020; 46(4): 576-578. doi:  10.1007/s00134-020-05966-y 
						
					 | 
			
| [55] | 
					 Fan Z, Chen L, Li J, et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol, 2020; 18(7): 1561-1566. doi:  10.1016/j.cgh.2020.04.002 
						
					 | 
			
| [56] | 
					 Lizardo-Thiebaud M J, Cervantes-Alvarez E, Limon-de la Rosa N, et al. Direct or collateral liver damage in SARS-CoV-2-infected patients. Semin Liver Dis, 2020; 40(3): 321-330. doi:  10.1055/s-0040-1715108 
						
					 | 
			
| [57] | 
					 Varga Z, Flammer A J, Steiger P, et al. Endothelial cell infection and199 FRIGID ZONE MEDICINE endotheliitis in COVID-19. Lancet, 2020; 395(10234): 1417-1418. doi:  10.1016/S0140-6736(20)30937-5 
						
					 | 
			
| [58] | 
					 Ackermann M, Verleden S E, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med, 2020; 383(2): 120-128. doi:  10.1056/NEJMoa2015432 
						
					 | 
			
| [59] | 
					 Gu S X, Tyagi T, Jain K, et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol, 2021; 18(3): 194-209. doi:  10.1038/s41569-020-00469-1 
						
					 | 
			
| [60] | 
					 Sepanlou S G, Safiri S, Bisignano C, et al. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 2020; 5(3): 245-266. doi:  10.1016/S2468-1253(19)30349-8 
						
					 | 
			
| [61] | 
					 Ji D, Qin E, Xu J, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J Hepatol, 2020; 73(2): 451-453. doi:  10.1016/j.jhep.2020.03.044 
						
					 | 
			
| [62] | 
					 Lipsitch M, Viboud C. Influenza seasonality: lifting the fog. Proc Natl Acad Sci U S A, 2009; 106(10): 3645-3646. doi:  10.1073/pnas.0900933106 
						
					 | 
			
| [63] | 
					 Wolkoff P. Indoor air humidity, air quality, and health - An overview. Int J Hyg Environ Health, 2018; 221(3): 376-390. doi:  10.1016/j.ijheh.2018.01.015 
						
					 | 
			
| [64] | 
					 Tan J, Mu L, Huang J, et al. An initial investigation of the association between the SARS outbreak and weather: with the view of the environmental temperature and its variation. J Epidemiol Community Health, 2005; 59(3): 186-192. doi:  10.1136/jech.2004.020180 
						
					 | 
			
| [65] | 
					 Araújo MB, Naimi B. Spread of SARS-CoV-2 Coronavirus likely constrained by climate. medRxiv, 2020. doi: 10.1101/2020.03.12.20034728. 
						
					 | 
			
| [66] | 
					 Wang M, Jiang A, Gong L, et al. Temperature Significantly Change COVID-19 Transmission in 429 cities. medRxiv, 2020. ChemRxiv. doi: 10.1101/2020.02.22.20025791 
						
					 | 
			
| [67] | 
					 Näyhä S, Hassi J. Cold and mortality from ischaemic heart disease in northern Finland. Arctic Med Res, 1995; 54 Suppl 2: 19-25. 
						
					 | 
			
| [68] | 
					 Näyhä S. Cold and the risk of cardiovascular diseases. A review. Int J Circumpolar Health, 2002; 61(4): 373-380. doi:  10.3402/ijch.v61i4.17495 
						
					 | 
			
| [69] | 
					 Sun Z. Cardiovascular responses to cold exposure. Front Biosci (Elite Ed), 2010; 2(2): 495-503. 
						
					 | 
			
| [70] | 
					 Waseem N, Chen PH. Hypoxic Hepatitis: A Review and Clinical Update. J Clin Transl Hepatol, 2016; 4(3): 263-268. 
						
					 | 
			
| [71] | 
					 Lightsey J M, Rockey D C. Current concepts in ischemic hepatitis. Curr Opin Gastroenterol, 2017; 33(3): 158-163. doi:  10.1097/MOG.0000000000000355 
						
					 | 
			
| [72] | 
					 Dunn G D, Hayes P, Breen K J, et al. The liver in congestive heart failure a review. Am J Med Sci, 1973; 265(3): 174-189. doi:  10.1097/00000441-197303000-00001 
						
					 |