Citation: | Jinglin Wang, Lingfeng Zha. RNA modification by M6A methylation in cardiovascular diseases: Current trends and future directions[J]. Frigid Zone Medicine, 2022, 2(3): 158-177. doi: 10.2478/fzm-2022-0023 |
[1] |
Vancheri F, Tate A R, Henein M, et al. Time trends in ischaemic heart disease incidence and mortality over three decades (1990-2019) in 20 Western European countries: systematic analysis of the Global Burden of Disease Study 2019. Eur J Prev Cardiol, 2022; 29(2): 396-403. doi: 10.1093/eurjpc/zwab134
|
[2] |
Estruch R, Ruilope L M, Cosentino F. The year in cardiovascular medicine 2020: epidemiology and prevention. Eur Heart J, 2021; 42(8): 813-821. doi: 10.1093/eurheartj/ehaa1062
|
[3] |
Fares A. Winter cardiovascular diseases phenomenon. N Am J Med Sci, 2013; 5(4): 266-279 doi: 10.4103/1947-2714.110430
|
[4] |
Rumana N, Kita Y, Turin T C, et al. Seasonal pattern of incidence and case fatality of acute myocardial infarction in a Japanese population (from the Takashima AMI Registry, 1988 to 2003). Am J Cardiol, 2008; 102(10): 1307-1311. doi: 10.1016/j.amjcard.2008.07.005
|
[5] |
Spencer F A, Goldberg R J, Becker R C, et al. Seasonal distribution of acute myocardial infarction in the second nationalregistry of myocardial infarction. J Am Coll Cardiol, 1998; 31(6): 1226-1233. doi: 10.1016/S0735-1097(98)00098-9
|
[6] |
Yang J, Yin P, Zhou M, et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart, 2015; 101(24): 1966-1972. doi: 10.1136/heartjnl-2015-308062
|
[7] |
Kysely J, Pokorna L, Kyncl J, et al. Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health, 2009; 9: 19. doi: 10.1186/1471-2458-9-19
|
[8] |
Zhai G, Qi J, Zhang X, et al. A comparison of the effect of diurnal temperature range and apparent temperature on cardiovascular disease among farmers in Qingyang, Northwest China. Environ Sci Pollut Res Int, 2022; 29(19): 28946-28956. doi: 10.1007/s11356-021-17785-9
|
[9] |
Bhaskaran K, Hajat S, Haines A, et al. Effects of ambient temperature on the incidence of myocardial infarction. Heart, 2009; 95(21): 1760-1769. doi: 10.1136/hrt.2009.175000
|
[10] |
Li C Y, Wu P J, Chang C J, et al. Weather impact on acute myocardial infarction hospital admissions with a new model for prediction: a nationwide study. Front Cardiovasc Med, 2021; 8: 725419. doi: 10.3389/fcvm.2021.725419
|
[11] |
Sanchez-Gloria J L, Carbo R, Buelna-Chontal M, et al. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-alpha, IL-1beta, and IL-6. Life Sci, 2021; 287: 120091. doi: 10.1016/j.lfs.2021.120091
|
[12] |
Virani S S, Alonso A, Benjamin E J, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation, 2020; 141(9): e139-e596.
|
[13] |
Zhang W, Song M, Qu J, et al. Epigenetic modifications in cardiovascular aging and diseases. Circ Res, 2018, 123(7): 773-786. doi: 10.1161/CIRCRESAHA.118.312497
|
[14] |
Kathiresan S, Srivastava D. Genetics of human cardiovascular disease. Cell, 2012; 148(6): 1242-1257. doi: 10.1016/j.cell.2012.03.001
|
[15] |
Sabatine M S, Giugliano R P, Keech A C, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med, 2017; 376(18): 1713-1722. doi: 10.1056/NEJMoa1615664
|
[16] |
Schwartz G G, Steg P G, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med, 2018; 379(22): 2097-2107. doi: 10.1056/NEJMoa1801174
|
[17] |
Ridker P M, Devalaraja M, Baeres F M M, et al. IL-6 inhibition with ziltivekimab in patients at high atherosclerotic risk (RESCUE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet, 2021; 397(10289): 2060-2069. doi: 10.1016/S0140-6736(21)00520-1
|
[18] |
Ridker P M, Everett B M, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med, 2017; 377(12): 1119-1131. doi: 10.1056/NEJMoa1707914
|
[19] |
Ridker P M, MacFadyen J G, Thuren T, et al. Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, doubleblind, placebo-controlled trial. Lancet, 2017; 390(10105): 1833-1842. doi: 10.1016/S0140-6736(17)32247-X
|
[20] |
Li X, Yang Y, Chen S, et al. Epigenetics-based therapeutics for myocardial fibrosis. Life Sci, 2021; 271: 119186. doi: 10.1016/j.lfs.2021.119186
|
[21] |
Wang W, Shao F, Yang X, et al. Author correction: METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N(6)-methyladenosine-dependent YTHDF binding. Nat Commun, 2021; 12(1): 4529. doi: 10.1038/s41467-021-24860-9
|
[22] |
Shafik A M, Zhang F, Guo Z, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer's disease. Genome Biol, 2021, 22(1): 17. doi: 10.1186/s13059-020-02249-z
|
[23] |
Komal S, Zhang L R, Han S N. Potential regulatory role of epigenetic RNA methylation in cardiovascular diseases. Biomed Pharmacother, 2021; 137: 111376. doi: 10.1016/j.biopha.2021.111376
|
[24] |
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A, 1974; 71(10): 3971-3975. doi: 10.1073/pnas.71.10.3971
|
[25] |
Meyer K D, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell, 2012; 149(7): 1635-1646. doi: 10.1016/j.cell.2012.05.003
|
[26] |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012; 485(7397): 201-206. doi: 10.1038/nature11112
|
[27] |
Shi H, Wei J, He C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol Cell, 2019; 74(4): 640-650. doi: 10.1016/j.molcel.2019.04.025
|
[28] |
Ma S, Chen C, Ji X, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol, 2019; 12(1): 121. doi: 10.1186/s13045-019-0805-7
|
[29] |
He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer, 2019; 18(1): 176. doi: 10.1186/s12943-019-1109-9
|
[30] |
Huisman B, Manske G, Carney S, et al. Functional dissection of the m6A RNA modification. Trends Biochem Sci, 2017; 42(2): 85-86. doi: 10.1016/j.tibs.2016.12.004
|
[31] |
Deng X, Su R, Weng H, et al. RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res, 2018; 28(5): 507-517. doi: 10.1038/s41422-018-0034-6
|
[32] |
Scholler E, Weichmann F, Treiber T, et al. Interactions, localization, and phosphorylation of the m(6)A generating METTL3-METTL14-WTAP complex. RNA, 2018; 24(4): 499-512. doi: 10.1261/rna.064063.117
|
[33] |
Bokar J A, Shambaugh M E, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA, 1997; 3(11): 1233-1247.
|
[34] |
Pendleton K E, Chen B, Liu K, et al. The U6 snRNA m(6) A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell, 2017; 169(5): 824-835. doi: 10.1016/j.cell.2017.05.003
|
[35] |
Frayling T M, Timpson N J, Weedon M N, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 2007; 316(5826): 889-894. doi: 10.1126/science.1141634
|
[36] |
Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet, 2007; 39(6): 724-726. doi: 10.1038/ng2048
|
[37] |
Scuteri A, Sanna S, Chen W M, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet, 2007; 3(7): e115. doi: 10.1371/journal.pgen.0030115
|
[38] |
Fischer J, Koch L, Emmerling C, et al. Inactivation of the FTO gene protects from obesity. Nature, 2009; 458(7240): 894-898. doi: 10.1038/nature07848
|
[39] |
Church C, Lee S, Bagg E A, et al. A mouse model for the metabolic effects of the human fat mass and obesity associated FTO gene. PLoS Genet, 2009; 5(8): e1000599. doi: 10.1371/journal.pgen.1000599
|
[40] |
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol, 2011; 7(12): 885-887. doi: 10.1038/nchembio.687
|
[41] |
Zheng G, Dahl J A, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell, 2013; 49(1): 18-29. doi: 10.1016/j.molcel.2012.10.015
|
[42] |
Stoilov P, Rafalska I, Stamm S. YTH: a new domain in nuclear proteins. Trends Biochem Sci, 2002; 27(10): 495-497. doi: 10.1016/S0968-0004(02)02189-8
|
[43] |
Theler D, Dominguez C, Blatter M, et al. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res, 2014; 42(22): 13911-13919. doi: 10.1093/nar/gku1116
|
[44] |
Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol, 2014; 10(11): 927-929. doi: 10.1038/nchembio.1654
|
[45] |
Meyer K D, Patil D P, Zhou J, et al. 5' UTR m(6)A promotes capindependent translation. Cell, 2015; 163(4): 999-1010. doi: 10.1016/j.cell.2015.10.012
|
[46] |
Huang H, Weng H, Sun W, et al. Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol, 2018; 20(3): 285-295. doi: 10.1038/s41556-018-0045-z
|
[47] |
Patil D P, Chen C K, Pickering B F, et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature, 2016; 537(7620): 369-373. doi: 10.1038/nature19342
|
[48] |
Xiao W, Adhikari S, Dahal U, et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell, 2016; 61(4): 507-519. doi: 10.1016/j.molcel.2016.01.012
|
[49] |
Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature, 2014; 505(7481): 117-120. doi: 10.1038/nature12730
|
[50] |
Shen L, Song C X, He C, et al. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu Rev Biochem, 2014; 83: 585-614. doi: 10.1146/annurev-biochem-060713-035513
|
[51] |
Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail, 2020; 22(1): 54-66. doi: 10.1002/ejhf.1672
|
[52] |
Kmietczyk V, Riechert E, Kalinski L, et al. m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance, 2019; 2(2): e201800233.
|
[53] |
Fu J, Cui X, Zhang X, et al. The role of m6A ribonucleic acid modification in the occurrence of atherosclerosis. Front Genet, 2021; 12: 733871. doi: 10.3389/fgene.2021.733871
|
[54] |
Quiles-Jimenez A, Gregersen I, de Sousa M M L, et al. N6-methyladenosine in RNA of atherosclerotic plaques: An epitranscriptomic signature of human carotid atherosclerosis. Biochem Biophys Res Commun, 2020; 533(4): 631-637. doi: 10.1016/j.bbrc.2020.09.057
|
[55] |
Wu L, Pei Y, Zhu Y, et al. Association of N(6)-methyladenine DNA with plaque progression in atherosclerosis via myocardial infarctionassociated transcripts. Cell Death Dis, 2019; 10(12): 909. doi: 10.1038/s41419-019-2152-6
|
[56] |
Deng K, Ning X, Ren X, et al. Transcriptome-wide N6-methyladenosine methylation landscape of coronary artery disease. Epigenomics, 2021; 13(10): 793-808. doi: 10.2217/epi-2020-0372
|
[57] |
Zhang X, Li X, Jia H, et al. The m(6)A methyltransferase METTL3 modifies PGC-1alpha mRNA promoting mitochondrial dysfunction and oxLDL-induced inflammation in monocytes. J Biol Chem, 2021; 297(3): 101058. doi: 10.1016/j.jbc.2021.101058
|
[58] |
Li Z, Xu Q, Huangfu N, et al. Mettl3 promotes oxLDL-mediated inflammation through activating STAT1 signaling. J Clin Lab Anal, 2022; 36(1): e24019.
|
[59] |
Guo M, Yan R, Ji Q, et al. IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome. Int Immunopharmacol, 2020; 86: 106800. doi: 10.1016/j.intimp.2020.106800
|
[60] |
Dong G, Yu J, han G, et al. N6-Methyladenosine methyltransferase METTL3 promotes angiogenesis and atherosclerosis by upregulating the JAK2/STAT3 pathway via m6A reader IGF2BP1. Front Cell Dev Biol, 2021; 9: 731810. doi: 10.3389/fcell.2021.731810
|
[61] |
Chien C S, Li J Y, Chien Y, et al. METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci U S A, 2021; 118(7): e2025070118. doi: 10.1073/pnas.2025070118
|
[62] |
Li B, Zhang T, Liu M, et al. RNA N(6)-methyladenosine modulates endothelial atherogenic responses to disturbed flow in mice. Elife, 2022; 11: e69906. doi: 10.7554/eLife.69906
|
[63] |
Zhang B Y, Han L, Tang Y F, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci, 2020; 24(12): 7015-7023.
|
[64] |
Jian D, Wang Y, Jian L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics, 2020; 10(20): 8939-8956. doi: 10.7150/thno.45178
|
[65] |
Tang X, Yin R, Shi H, et al. LncRNA ZFAS1 confers inflammatory responses and reduces cholesterol efflux in atherosclerosis through regulating miR-654-3p-ADAM10/RAB22A axis. Int J Cardiol, 2020; 315: 72-80. doi: 10.1016/j.ijcard.2020.03.056
|
[66] |
Chen L, Yao H, Hui J Y, et al. Global transcriptomic study of atherosclerosis development in rats. Gene, 2016; 592(1): 43-48. doi: 10.1016/j.gene.2016.07.023
|
[67] |
Gong C, Fan Y, Liu J. METTL14 mediated m6A modification to LncRNA ZFAS1/RAB22A: A novel therapeutic target for atherosclerosis. Int J Cardiol, 2021; 328: 177. doi: 10.1016/j.ijcard.2020.12.002
|
[68] |
Chang J S, Lin Z X, Liu Y J, et al. Ultra performance liquid chromatography-tandem mass spectrometry assay for the quantification of RNA and DNA methylation. J Pharm Biomed Anal, 2021; 197: 113969. doi: 10.1016/j.jpba.2021.113969
|
[69] |
Shi X, Cao Y, Zhang X, et al. Comprehensive analysis of N6-Methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction. Front Cell Dev Biol, 2021; 9: 756483. doi: 10.3389/fcell.2021.756483
|
[70] |
Alarcon C R, Goodarzi H, Lee H, et al. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162(6): 1299-1308. doi: 10.1016/j.cell.2015.08.011
|
[71] |
T. Li, Y. Zhuang, W. Yang, et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J, 2021, 35(2): e21162.
|
[72] |
Dorn L E, Lasman L, Chen J, et al. The N(6)-Methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation, 2019; 139(4): 533-545. doi: 10.1161/CIRCULATIONAHA.118.036146
|
[73] |
Lu P, Xu Y, Sheng Z Y, et al. De-ubiquitination of p300 by USP12 Critically Enhances METTL3 Expression and Ang Ⅱ-induced cardiac hypertrophy. Exp Cell Res, 2021; 406(1): 112761. doi: 10.1016/j.yexcr.2021.112761
|
[74] |
Gao X Q, Zhang Y H, Liu F, et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N(6)-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol, 2020; 22(11): 1319-1331. doi: 10.1038/s41556-020-0576-y
|
[75] |
Gao S, Sun H, Chen K, et al. Depletion of m(6) A reader protein YTHDC1 induces dilated cardiomyopathy by abnormal splicing of Titin. J Cell Mol Med, 2021; 25(23): 10879-10891. doi: 10.1111/jcmm.16955
|
[76] |
Gong R, Wang X, Li H, et al. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res, 2021; 174: 105845. doi: 10.1016/j.phrs.2021.105845
|
[77] |
Han Z, Wang X, Xu Z, et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics, 2021; 11(6): 3000-3016. doi: 10.7150/thno.47354
|
[78] |
Wang K, Li Y, Qiang T, et al. Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacol Res, 2021; 170: 105743. doi: 10.1016/j.phrs.2021.105743
|
[79] |
Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol, 2021; 106(12): 2423-2433. doi: 10.1113/EP089901
|
[80] |
Cheng P, Han H, Chen F, et al. Amelioration of acute myocardial infarction injury through targeted ferritin nanocages loaded with an ALKBH5 inhibitor. Acta Biomater, 2021; 140: 481-491.
|
[81] |
Su X, Shen Y, Jin Y, et al. Aging-associated differences in epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front Pharmacol, 2021; 12: 654316. doi: 10.3389/fphar.2021.654316
|
[82] |
Zhao X, Yang L, Qin L. Methyltransferase-like 3 (METTL3) attenuates cardiomyocyte apoptosis with myocardial ischemiareperfusion (I/R) injury through miR-25-3p and miR-873-5p. Cell Biol Int, 2021: 11706.
|
[83] |
Wang J, Zhang J, Ma Y, et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m(6)A modification of ATF4 mRNA. Aging (Albany NY), 2021; 13(8): 11135-11149.
|
[84] |
Song H, Feng X, Zhang H, et al. METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy, 2019; 15(8): 1419-1437. doi: 10.1080/15548627.2019.1586246
|
[85] |
Ruan Z, Wang S, Yu W, et al. LncRNA MALAT1 aggravates inflammation response through regulating PTGS2 by targeting miR-26b in myocardial ischemia-reperfusion injury. Int J Cardiol, 2019; 288: 122. doi: 10.1016/j.ijcard.2019.04.015
|
[86] |
Zhao Z H, Hao W, Meng Q T, et al. Long non-coding RNA MALAT1 functions as a mediator in cardioprotective effects of fentanyl in myocardial ischemia-reperfusion injury. Cell Biol Int, 2017; 41(1): 62-70. doi: 10.1002/cbin.10701
|
[87] |
Yang C, Fan Z, Yang J. m(6)A modification of LncRNA MALAT1: A novel therapeutic target for myocardial ischemia-reperfusion injury. Int J Cardiol, 2020; 306: 162. doi: 10.1016/j.ijcard.2019.11.140
|
[88] |
Hinger S A, Wei J, Dorn L E, et al. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol, 2021; 151: 46-55. doi: 10.1016/j.yjmcc.2020.11.002
|
[89] |
Zhang B, Xu Y, Cui X, et al. Alteration of m6A RNA Methylation in Heart Failure With Preserved Ejection Fraction. Front Cardiovasc Med, 2021, 8: 647806. doi: 10.3389/fcvm.2021.647806
|
[90] |
Zhang B, Jiang H, Wu J, et al. m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther, 2021; 6(1): 377. doi: 10.1038/s41392-021-00699-w
|
[91] |
Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N(6)-Methyladenosine regulates cardiac function during remodeling and repair. Circulation, 2019; 139(4): 518-532. doi: 10.1161/CIRCULATIONAHA.118.033794
|
[92] |
Shen W, Li H, Su H, et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem, 2021; 476(5): 2171-2179. doi: 10.1007/s11010-021-04069-6
|
[93] |
Xu H, Wang Z, Chen M, et al. YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci, 2021; 11(1): 132. doi: 10.1186/s13578-021-00649-7
|
[94] |
Wang T, Tian J, Jin Y. VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep, 2021; 11(1): 19488. doi: 10.1038/s41598-021-98998-3
|
[95] |
NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 2021; 398(10304): 957-980. doi: 10.1016/S0140-6736(21)01330-1
|
[96] |
Wu Q, Yuan X, Han R, et al. Epitranscriptomic mechanisms of N6-methyladenosine methylation regulating mammalian hypertension development by determined spontaneously hypertensive rats pericytes. Epigenomics, 2019; 11(12): 1359-1370. doi: 10.2217/epi-2019-0148
|
[97] |
Zeng Y, Huang T, Zuo W, et al. Integrated analysis of m(6)A mRNA methylation in rats with monocrotaline-induced pulmonary arterial hypertension. Aging (Albany NY), 2021; 13(14): 18238-18256.
|
[98] |
Hu L, Wang J, Huang H, et al. YTHDF1 regulates pulmonary hypertension through translational control of MAGED1. Am J Respir Crit Care Med, 2021; 203(9): 1158-1172. doi: 10.1164/rccm.202009-3419OC
|
[99] |
Qin Y, Qiao Y, Li L, et al. The m(6)A methyltransferase METTL3 promotes hypoxic pulmonary arterial hypertension. Life Sci, 2021; 274: 119366. doi: 10.1016/j.lfs.2021.119366
|
[100] |
Zhou X L, Huang F J, Li Y, et al. SEDT2/METTL14-mediated m6A methylation awakening contributes to hypoxia-induced pulmonary arterial hypertension in mice. Aging (Albany NY), 2021; 13(5): 7538-7548.
|
[101] |
Su H, Wang G, Wu L, et al. Transcriptome-wide map of m(6) A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics, 2020; 21(1): 39. doi: 10.1186/s12864-020-6462-y
|
[102] |
Xu S, Xu X, Zhang Z, et al. The role of RNA m(6)A methylation in the regulation of postnatal hypoxia-induced pulmonary hypertension. Respir Res, 2021; 22(1): 121. doi: 10.1186/s12931-021-01728-6
|
[103] |
He Y, Xing J, Wang S, et al. Increased m6A methylation level is associated with the progression of human abdominal aortic aneurysm. Ann Transl Med, 2019; 7(24): 797. doi: 10.21037/atm.2019.12.65
|
[104] |
Li T, Wang T, Jing J, et al. Expression pattern and clinical value of key m6A RNA modification regulators in abdominal aortic aneurysm. J Inflamm Res, 2021; 14: 4245-4258. doi: 10.2147/JIR.S327152
|
[105] |
Zhong L, He X, Song H, et al. METTL3 induces AAA development and progression by modulating N6-methyladenosinedependent primary miR34a processing. Mol Ther Nucleic Acids, 2020; 21: 394-411. doi: 10.1016/j.omtn.2020.06.005
|
[106] |
Ma D, Liu X, Zhang J J, et al. Vascular smooth muscle FTO promotes aortic dissecting aneurysms via m6A modification of Klf5. Front Cardiovasc Med, 2020; 7: 592550. doi: 10.3389/fcvm.2020.592550
|
[107] |
Ju W, Liu K, Ouyang S, et al. Changes in N6-Methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy. Front Cell Dev Biol, 2021, 9: 702579. doi: 10.3389/fcell.2021.702579
|
[108] |
Yu Y, Pan Y, Fan Z, et al. LuHui derivative, a novel compound that inhibits the fat mass and obesity-associated (FTO), alleviates the inflammatory response and injury in hyperlipidemia-induced cardiomyopathy. Front Cell Dev Biol, 2021; 9: 731365. doi: 10.3389/fcell.2021.731365
|
[109] |
Dubey P K, Patil M, Singh S, et al. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem, 2022; 477(1): 129-141. doi: 10.1007/s11010-021-04267-2
|
[110] |
Mo X B, Lei S F, Zhang Y H, et al. Detection of m(6)A-associated SNPs as potential functional variants for coronary artery disease. Epigenomics, 2018; 10(10): 1279-1287. doi: 10.2217/epi-2018-0007
|
[111] |
Mo X, Lei S, Zhang Y, et al. Genome-wide enrichment of m(6) A-associated single-nucleotide polymorphisms in the lipid loci. Pharmacogenomics J, 2019; 19(4): 347-357. doi: 10.1038/s41397-018-0055-z
|
[112] |
Mo X B, Lei S F, Zhang Y H, et al. Examination of the associations between m(6)A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res, 2019; 42(10): 1582-1589. doi: 10.1038/s41440-019-0277-8
|
[113] |
Zhang H, Shi X, Huang T, et al. Dynamic landscape and evolution of m6A methylation in human. Nucleic Acids Res, 2020; 48(11): 6251-6264. doi: 10.1093/nar/gkaa347
|
[114] |
Xiong X, Hou L, Park Y P, et al. Genetic drivers of m(6)A methylation in human brain, lung, heart and muscle. Nat Genet, 2021; 53(8): 1156-1165. doi: 10.1038/s41588-021-00890-3
|
[115] |
Zhou Y, Fang Y, Dai C, et al. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl), 2021; 99(12): 1681-1690. doi: 10.1007/s00109-021-02132-9
|
[116] |
Chen J, Liu Z, Ma L, et al. Targeting epigenetics and non-coding RNAs in myocardial infarction: from mechanisms to therapeutics. Front Genet, 2021; 12: 780649. doi: 10.3389/fgene.2021.780649
|
[117] |
Jakobi T, Siede D, Eschenbach J, et al. Deep characterization of circular RNAs from human cardiovascular cell models and cardiac tissue. Cells, 2020; 9(7): 1616. doi: 10.3390/cells9071616
|
[118] |
Li M, Parker B L, Pearson E, et al. Core functional nodes and sex-specific pathways in human ischaemic and dilated cardiomyopathy. Nat Commun, 2020; 11(1): 2843. doi: 10.1038/s41467-020-16584-z
|
[119] |
Cui H, Chen Y, Li K, et al. Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection. Eur Heart J, 2021; 42(42): 4373-4385. doi: 10.1093/eurheartj/ehab605
|
[120] |
Yan X, Jin J, Su X, et al. Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circ Res, 2020; 126(7): 839-853. doi: 10.1161/CIRCRESAHA.119.316394
|
[121] |
Barallobre-Barreiro J, Radovits T, Fava M, et al. Extracellular matrix in heart failure: role of ADAMTS5 in proteoglycan remodeling. Circulation, 2021; 144(25): 2021-2034. doi: 10.1161/CIRCULATIONAHA.121.055732
|
[122] |
Yokota T, McCourt J, Ma F, et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell, 2020; 182(3): 545-562. doi: 10.1016/j.cell.2020.06.030
|
[123] |
Porritt R A, Zemmour D, Abe M, et al. NLRP3 inflammasome mediates immune-stromal interactions in vasculitis. Circ Res, 2021; 129(9): e183-e200.
|
[124] |
Asp M, Giacomello S, Larsson L, et al. A spatiotemporal organwide gene expression and cell atlas of the developing human heart. Cell, 2019; 179(7): 1647-1660. doi: 10.1016/j.cell.2019.11.025
|
[125] |
Sikorski V, Karjalainen P, Blokhina D, et al. Epitranscriptomics of ischemic heart disease-the IHD-EPITRAN study design and objectives. Int J Mol Sci, 2021; 22(12): 6630. doi: 10.3390/ijms22126630
|