Volume 2 Issue 3
Oct.  2022
Turn off MathJax
Article Contents
Hong Jin. Increased risk of cardiovascular disease in cold temperatures[J]. Frigid Zone Medicine, 2022, 2(3): 138-139. doi: 10.2478/fzm-2022-0020
Citation: Hong Jin. Increased risk of cardiovascular disease in cold temperatures[J]. Frigid Zone Medicine, 2022, 2(3): 138-139. doi: 10.2478/fzm-2022-0020

Increased risk of cardiovascular disease in cold temperatures

doi: 10.2478/fzm-2022-0020
More Information
  • Corresponding author: Hong Jin, E-mail: hong.jin@ki.se
  • Received Date: 2022-04-29
  • Accepted Date: 2022-07-13
  • Available Online: 2022-10-15
  • loading
  • [1]
    Sattar N, Gill J M R, Alazawi W. Improving prevention strategies for cardiometabolic disease. Nat Med, 2020; 26: 320-325. doi: 10.1038/s41591-020-0786-7
    [2]
    Pazoki R, Dehghan A, Evangelou E, et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation, 2018; 137(7): 653-661. doi: 10.1161/CIRCULATIONAHA.117.030898
    [3]
    Teo K K, Rafiq T. Cardiovascular risk factors and prevention: a perspective from developing countries. Can J Cardiol, 2021; 37(5): 733-743. doi: 10.1016/j.cjca.2021.02.009
    [4]
    Tanaka H, Shinjo M, Tsukuma H, et al. Seasonal variation in mortality from ischemic heart disease and cerebrovascular disease in Okinawa and Osaka: the possible role of air temperature. J Epidemiol, 2000; 10(6): 392-398. doi: 10.2188/jea.10.392
    [5]
    Kephart J L, Sánchez B N, Moore J, et al. City-level impact of extreme temperatures and mortality in Latin America. Nat Med, 2022. Epub ahead of print.
    [6]
    Barnett A G, de Looper M, Fraser J F. The seasonality in heart failure deaths and total cardiovascular deaths. Aust N Z J Public Health, 2008; 32(5): 408-413. doi: 10.1111/j.1753-6405.2008.00270.x
    [7]
    Sartini C, Barry S J E, Wannamethee S G, et al. Effect of cold spells and their modifiers on cardiovascular disease events: Evidence from two prospective studies. Int J Cardiol, 2016; 218: 275-283. doi: 10.1016/j.ijcard.2016.05.012
    [8]
    Verberkmoes N J, Soliman Hamad M A, Ter Woorst J F, et al. Impact of temperature and atmospheric pressure on the incidence of major acutecardiovascular events. Neth Heart J, 2012; 20(5): 193-196. doi: 10.1007/s12471-012-0258-x
    [9]
    Vaičiulis V, Jaakkola J J K, Radišauskas R, et al. Association between winter cold spells and acute myocardial infarction in Lithuania 2000-2015. Sci Rep, 2021; 11(1): 17062. doi: 10.1038/s41598-021-96366-9
    [10]
    Marti-Soler H, Gubelmann C, Aeschbacher S, et al. Seasonality of cardiovascular risk factors: an analysis including over 230 000 participants in 15 countries. Heart, 2014; 100(19): 1517-1523. doi: 10.1136/heartjnl-2014-305623
    [11]
    Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol, 2015; 309(11): H1793-812. doi: 10.1152/ajpheart.00199.2015
    [12]
    Yin Z, Ding G, Chen X, et al. Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism, 2020; 113: 154397. doi: 10.1016/j.metabol.2020.154397
    [13]
    Cong P, Liu Y, Liu N, et al. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord, 2018; 18(1): 36. doi: 10.1186/s12872-018-0748-x
    [14]
    Bhatnagar A. Environmental determinants of cardiovascular disease. Circ Res, 2017; 121(2): 162-180. doi: 10.1161/CIRCRESAHA.117.306458
    [15]
    Dong M, Yang X, Lim S, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab, 2013; 18(1): 118-129. doi: 10.1016/j.cmet.2013.06.003
    [16]
    Wu Z, Lan S, Chen C, et al. Seasonal variation: a non-negligible factor associated with blood pressure in patients undergoing hemodialysis. Front Cardiovasc Med, 2022; 9: 820483. doi: 10.3389/fcvm.2022.820483
    [17]
    Kim G H, Ryan J J, Archer S L. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal, 2013; 18(15): 1920-1936. doi: 10.1089/ars.2012.4926
    [18]
    Tanimura K, Suzuki T, Vargas D, et al. Epigenetic regulation of beige adipocyte fate by histone methylation. Endocr J, 2019; 66(2): 115-125. doi: 10.1507/endocrj.EJ18-0442
    [19]
    Bind M A, Zanobetti A, Gasparrini A, et al. Effects of temperature and relative humidity on DNA methylation. Epidemiology, 2014; 25(4): 561-569. doi: 10.1097/EDE.0000000000000120
    [20]
    Lim YH, Han C, Bae S, et al. Modulation of blood pressure in response to low ambient temperature: The role of DNA methylation of zinc finger genes. Environ Res, 2017;153: 106-111. doi: 10.1016/j.envres.2016.11.019
    [21]
    Schneider A, Panagiotakos D, Picciotto S, et al. Air temperature and inflammatory responses in myocardial infarction survivors. Epidemiology, 2008; 19(3): 391-400. doi: 10.1097/EDE.0b013e31816a4325
    [22]
    Sánchez-Gloria J L, Carbó R, Buelna-Chontal M, et al. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α, IL-1β, and IL-6. Life Sci, 2021; 287: 120091. doi: 10.1016/j.lfs.2021.120091
    [23]
    Ikäheimo T M. Cardiovascular diseases, cold exposure and exercise. Temperature(Austin), 2018; 5(2): 123-146.
    [24]
    Halonen J I, Zanobetti A, Sparrow D, et al. Associations between outdoor temperature and markers of inflammation: a cohort study. Environ Health, 2010; 9: 42. doi: 10.1186/1476-069X-9-42
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return