Citation: | Zhenghua Li, Kenichi Yamamura. Dissecting pathophysiology of a human dominantly inherited disease, familial amyloidotic polyneuropathy, by using genetically engineered mice[J]. Frigid Zone Medicine, 2022, 2(2): 65-75. doi: 10.2478/fzm-2022-0009 |
[1] |
Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain, 1952; 75(3): 408-427. doi: 10.1093/brain/75.3.408
|
[2] |
Dickson P W, Howlett G J, Schreiber G. Rat transthyretin (prealbumin). Molecular cloning, nucleotide sequence, and gene expression in liver and brain. J Biol Chem, 1985; 260(13): 8214-8219. doi: 10.1016/S0021-9258(17)39583-2
|
[3] |
Kato M, Soprano D R, Makover A, et al. Localization of immunoreactive transthyretin (prealbumin) and of transthyretin mRNA in fetal and adult rat brain. Differentiation, 1986; 31(3): 228-235. doi: 10.1111/j.1432-0436.1986.tb00402.x
|
[4] |
Soprano D R, Herbert J, Soprano K J, et al. Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J Biol Chem, 1985; 260(21): 11793-11798. doi: 10.1016/S0021-9258(17)39100-7
|
[5] |
Schreiber G. The evolution of transthyretin synthesis in the choroid plexus. Clin Chem Lab Med, 2002; 40(12): 1200-1210.
|
[6] |
Vranckx R, Savu L, Maya M, et al. Characterization of a major development-regulated serum thyroxine-binding globulin in the euthyroid mouse. Biochem J, 1990; 271(2): 373-379. doi: 10.1042/bj2710373
|
[7] |
Blake C C, Swan I D, Rerat C, et al. An X-ray study of the subunit structure of prealbumin. J Mol Biol, 1971; 61(1): 217-224. doi: 10.1016/0022-2836(71)90218-X
|
[8] |
Colon W, Kelly J W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry, 1992; 31(36): 8654- 8660. doi: 10.1021/bi00151a036
|
[9] |
Hammarstrom P, Jiang X, Hurshman A R, et al. Sequence-dependent denaturation energetics: A major determinant in amyloid disease diversity. Proc Natl Acad Sci U S A, 2002; 99(Suppl 4): 16427-16432.
|
[10] |
Lai Z, Colon W, Kelly J W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can selfassemble into amyloid. Biochemistry, 1996; 35(20): 6470-6482. doi: 10.1021/bi952501g
|
[11] |
Hund E, Linke R P, Willig F, et al. Transthyretin-associated neuropathic amyloidosis. Pathogenesis and treatment. Neurology, 2001; 56(4): 431-435. http://www.ncbi.nlm.nih.gov/pubmed/11261421
|
[12] |
Ikeda S, Hanyu N, Hongo M, et al. Hereditary generalized amyloidosis with polyneuropathy. Clinicopathological study of 65 Japanese patients. Brain, 1987; 110 (Pt 2): 315-337.
|
[13] |
Plante-Bordeneuve V, Lalu T, Misrahi M, et al. Genotypic-phenotypic variations in a series of 65 patients with familial amyloid polyneuropathy. Neurology, 1998; 51(3): 708-714. doi: 10.1212/WNL.51.3.708
|
[14] |
Reilly M M, Adams D, Booth D R, et al. Transthyretin gene analysis in European patients with suspected familial amyloid polyneuropathy. Brain, 1995; 118 (Pt 4): 849-856.
|
[15] |
Sousa A, Andersson R, Drugge U, et al. Familial amyloidotic polyneuropathy in Sweden: geographical distribution, age of onset, and prevalence. Hum Hered, 1993; 43(5): 288-294. doi: 10.1159/000154146
|
[16] |
Yamamura K, Wakasugi S, Maeda S, et al. Tissue-specific and developmental expression of human transthyretin gene in transgenic mice. Dev Genet, 1987; 8(4): 195-205. doi: 10.1002/dvg.1020080404
|
[17] |
Nagata Y, Tashiro F, Yi S, et al. A 6-kb upstream region of the human transthyretin gene can direct developmental, tissue-specific, and quantitatively normal expression in transgenic mouse. J Biochem, 1995; 117(1): 169-175. doi: 10.1093/oxfordjournals.jbchem.a124705
|
[18] |
Tagoe C E, Jacobson D R, Gallo G, et al. Mice transgenic for human TTR have the same frequency of renal TTR deposition whether maintained in conventional or specific pathogen free environments. Amyloid, 2003; 10(4): 262-266. doi: 10.3109/13506120309041744
|
[19] |
Takaoka Y, Ohta M, Miyakawa K, et al. Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met. Am J Pathol, 2004; 164(1): 337-345. doi: 10.1016/S0002-9440(10)63123-9
|
[20] |
Takaoka Y, Tashiro F, Yi S, et al. Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy, type Ⅰ. Transgenic Res, 1997; 6(4): 261-269. doi: 10.1023/A:1018454527309
|
[21] |
Teng M H, Yin J Y, Vidal R, et al. Amyloid and nonfibrillar deposits in mice transgenic for wild-type human transthyretin: a possible model for senile systemic amyloidosis. Lab Invest, 2001; 81(3): 385-396. doi: 10.1038/labinvest.3780246
|
[22] |
Watts R P, Umemichi T, Zeldenrust S R, et al. Development of lines of transgenic mice expressing the human transthyretin Ser84 variant. Neuromuscul Disord, 1996; 6(Sul 1): S31.
|
[23] |
Yi S, Takahashi K, Naito M, et al. Systemic amyloidosis in transgenic mice carrying the human mutant transthyretin (Met30) gene. Pathologic similarity to human familial amyloidotic polyneuropathy, type Ⅰ. Am J Pathol, 1991; 138(2): 403-412.
|
[24] |
Costa P P, Figueira A S, Bravo F R. Amyloid fibril protein related to prealbumin in familial amyloidotic polyneuropathy. Proc Natl Acad Sci U S A, 1978; 75(9): 4499-4503. doi: 10.1073/pnas.75.9.4499
|
[25] |
Dwulet F E, Benson M D. Primary structure of an amyloid prealbumin and its plasma precursor in a heredofamilial polyneuropathy of Swedish origin. Proc Natl Acad Sci U S A, 1984; 81(3): 694-698. doi: 10.1073/pnas.81.3.694
|
[26] |
Saraiva M J, Birken S, Costa P P, et al. Amyloid fibril protein in familial amyloidotic polyneuropathy, Portuguese type. Definition of molecular abnormality in transthyretin (prealbumin). J Clin Invest, 1984; 74(1): 104-119. doi: 10.1172/JCI111390
|
[27] |
Tawara S, Nakazato M, Kangawa K, et al. Identification of amyloid prealbumin variant in familial amyloidotic polyneuropathy (Japanese type). Biochem Biophys Res Commun, 1983; 116(3): 880-888. doi: 10.1016/S0006-291X(83)80224-1
|
[28] |
Harats N, Worth R O, Benson M D. Evidence against early amyloid deposition in heredutary amyloidosis, vol. 3. Portugal: Arquivos de Medicina, 1990.
|
[29] |
Sousa M M, Fernandes R, Palha J A, et al. Evidence for early cytotoxic aggregates in transgenic mice for human transthyretin Leu55Pro. Am J Pathol 2002; 161(5): 1935-1948. doi: 10.1016/S0002-9440(10)64469-0
|
[30] |
Inoue S, Ohta M, Li Z, et al. Specific pathogen free conditions prevent transthyretin amyloidosis in mouse models. Transgenic Res, 2008; 17(5): 817-826. doi: 10.1007/s11248-008-9180-9
|
[31] |
Kohno K, Palha J A, Miyakawa K, et al. Analysis of amyloid deposition in a transgenic mouse model of homozygous familial amyloidotic polyneuropathy. Am J Pathol, 1997; 150(4): 1497-1508.
|
[32] |
Li X, Lyu Y, Shen J, et al. Amyloid deposition in a mouse model humanized at the transthyretin and retinol-binding protein 4 loci. Lab Invest, 2018; 98(4): 512-524. doi: 10.1038/s41374-017-0019-y
|
[33] |
Bergstrom J, Gustavsson A, Hellman U, et al. Amyloid deposits in transthyretin-derived amyloidosis: cleaved transthyretin is associated with distinct amyloid morphology. J Pathol, 2005; 206(2): 224-232. doi: 10.1002/path.1759
|
[34] |
Ihse E, Rapezzi C, Merlini G, et al. Amyloid fibrils containing fragmented ATTR may be the standard fibril composition in ATTR amyloidosis. Amyloid, 2013; 20(3): 142-150. doi: 10.3109/13506129.2013.797890
|
[35] |
Ihse E, Suhr O B, Hellman U, et al. Variation in amount of wild-type transthyretin in different fibril and tissue types in ATTR amyloidosis. J Mol Med (Berl), 2011; 89(2): 171-180. doi: 10.1007/s00109-010-0695-1
|
[36] |
Ihse E, Ybo A, Suhr O, et al. Amyloid fibril composition is related to the phenotype of hereditary transthyretin V30M amyloidosis. J Pathol, 2008; 216(2): 253-261. doi: 10.1002/path.2411
|
[37] |
Mangione P P, Porcari R, Gillmore J D, et al. Proteolytic cleavage of Ser52Pro variant transthyretin triggers its amyloid fibrillogenesis. Proc Natl Acad Sci U S A, 2014; 111(4): 1539-1544. doi: 10.1073/pnas.1317488111
|
[38] |
Marcoux J, Mangione P P, Porcari R, et al. A novel mechanoenzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med, 2015; 7(10): 1337-1349. doi: 10.15252/emmm.201505357
|
[39] |
Sant'Anna R, Braga C, Varejao N, et al. The importance of a gatekeeper residue on the aggregation of transthyretin: implications for transthyretin-related amyloidoses. J Biol Chem, 2014; 289(41): 28324- 28337. doi: 10.1074/jbc.M114.563981
|
[40] |
Mangione P P, Verona G, Corazza A, et al. Plasminogen activation triggers transthyretin amyloidogenesis in vitro. J Biol Chem, 2018; 293(37): 14192-14199. doi: 10.1074/jbc.RA118.003990
|
[41] |
Slamova I, Adib R, Ellmerich S, et al. Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis. Nat Commun, 2021; 12(1): 7112. doi: 10.1038/s41467-021-27416-z
|
[42] |
Bohrmann B, Tjernberg L, Kuner P, et al. Endogenous proteins controlling amyloid beta-peptide polymerization. Possible implications for beta-amyloid formation in the central nervous system and in peripheral tissues. J Biol Chem, 1999; 274(23): 15990-15995. doi: 10.1074/jbc.274.23.15990
|
[43] |
Gollin P A, Kalaria R N, Eikelenboom P, et al. Alpha 1-antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer's disease. Neuroreport, 1992; 3(2): 201-203. doi: 10.1097/00001756-199202000-00020
|
[44] |
Torricelli C, Capurro E, Santucci A, et al. Multiple plasma proteins control atrial natriuretic peptide (ANP) aggregation. J Mol Endocrinol, 2004; 33(2): 335-341. doi: 10.1677/jme.1.01530
|
[45] |
Sharp H L. The current status of alpha-1-antityrpsin, a protease inhibitor, in gastrointestinal disease. Gastroenterology, 1976; 70(4): 611- 621. doi: 10.1016/S0016-5085(76)80506-9
|
[46] |
Niemietz C, Fleischhauer L, Sandfort V, et al. Hepatocyte-like cells reveal novel role of SERPINA1 in transthyretin amyloidosis. J Cell Sci, 2018; 131(23): jcs219824.
|
[47] |
Niemietz C, Bezerra F, Almeida M R, et al. SERPINA1 modulates expression of amyloidogenic transthyretin. Exp Cell Res, 2020; 395(2): 112217. doi: 10.1016/j.yexcr.2020.112217
|
[48] |
Bezerra F, Niemietz C, Schmidt H H J, et al. In vitro and in vivo effects of serpinA1 on the modulation of transthyretin proteolysis. Int J Mol Sci, 2021; 22(17): 9488. doi: 10.3390/ijms22179488
|
[49] |
Santos S D, Fernandes R, Saraiva M J. The heat shock response modulates transthyretin deposition in the peripheral and autonomic nervous systems. Neurobiol Aging, 2010; 31(2): 280-289. doi: 10.1016/j.neurobiolaging.2008.04.001
|
[50] |
Tagoe C E, Reixach N, Friske L, et al. In vivo stabilization of mutant human transthyretin in transgenic mice. Amyloid, 2007; 14(3): 227-236. doi: 10.1080/13506120701464396
|
[51] |
Reixach N, Foss T R, Santelli E, et al. Human-murine transthyretin heterotetramers are kinetically stable and non-amyloidogenic. A lesson in the generation of transgenic models of diseases involving oligomeric proteins. J Biol Chem, 2008; 283(4): 2098-2107. doi: 10.1074/jbc.M708028200
|
[52] |
Soprano D R, Blaner W S. Plasma retino-binding protein. New York: Raven Press, 1994.
|
[53] |
Benson M D, Kincaid J C. The molecular biology and clinical features of amyloid neuropathy. Muscle Nerve, 2007; 36(4): 411-423. doi: 10.1002/mus.20821
|
[54] |
Dyck P J, Lambert E H. Dissociated sensation in amylidosis. Compound action potential, quantitative histologic and teased-fiber, and electron microscopic studies of sural nerve biopsies. Arch Neurol, 1969; 20(5): 490-507. doi: 10.1001/archneur.1969.00480110054005
|
[55] |
Sousa M M, Du Yan S, Fernandes R, et al. Familial amyloid polyneuropathy: receptor for advanced glycation end products-dependent triggering of neuronal inflammatory and apoptotic pathways. J Neurosci, 2001; 21(19): 7576-7586. doi: 10.1523/JNEUROSCI.21-19-07576.2001
|
[56] |
Sousa M M, Cardoso I, Fernandes R, et al. Deposition of transthyretin in early stages of familial amyloidotic polyneuropathy: evidence for toxicity of nonfibrillar aggregates. Am J Pathol, 2001; 159(6): 1993-2000. doi: 10.1016/S0002-9440(10)63050-7
|
[57] |
Murakami T, Sango K, Watabe K, et al. Schwann cells contribute to neurodegeneration in transthyretin amyloidosis. J Neurochem, 2015; 134(1): 66-74. doi: 10.1111/jnc.13068
|
[58] |
Chao C C, Huang C M, Chiang H H, et al. Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates. Ann Neurol, 2015; 78(2): 272-283. doi: 10.1002/ana.24438
|
[59] |
Yang N C, Lee M J, Chao C C, et al. Clinical presentations and skin denervation in amyloid neuropathy due to transthyretin Ala97Ser. Neurology, 2010; 75(6): 532-538. doi: 10.1212/WNL.0b013e3181ec7fda
|
[60] |
Kan H W, Chiang H, Lin W M, et al. Sensory nerve degeneration in a mouse model mimicking early manifestations of familial amyloid polyneuropathy due to transthyretin Ala97Ser. Neuropathol Appl Neurobiol, 2018; 44(7): 673-686. doi: 10.1111/nan.12477
|
[61] |
Hafer-Macko C E, Dyck P J, Koski C L. Complement activation in acquired and hereditary amyloid neuropathy. J Peripher Nerv Syst, 2000; 5(3): 131-139. doi: 10.1046/j.1529-8027.2000.00018.x
|
[62] |
Dardiotis E, Koutsou P, Zamba-Papanicolaou E, et al. Complement C1Q polymorphisms modulate onset in familial amyloidotic polyneuropathy TTR Val30Met. J Neurol Sci, 2009; 284(1-2): 158-162. doi: 10.1016/j.jns.2009.05.018
|
[63] |
Panayiotou E, Fella E, Papacharalambous R, et al. C1q ablation exacerbates amyloid deposition: A study in a transgenic mouse model of ATTRV30M amyloid neuropathy. PLoS One, 2017; 12(4): e0175767. doi: 10.1371/journal.pone.0175767
|
[64] |
Fonseca M I, Chu S H, Berci A M, et al. Contribution of complement activation pathways to neuropathology differs among mouse models of Alzheimer's disease. J Neuroinflammation, 2011; 8(1): 4. doi: 10.1186/1742-2094-8-4
|
[65] |
Mathern D R, Heeger P S. Molecules great and small: the complement system. Clin J Am Soc Nephrol, 2015; 10(9): 1636-1650. doi: 10.2215/CJN.06230614
|
[66] |
Fonseca M I, Ager R R, Chu S H, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J Immunol, 2009; 183(2): 1375- 1383. doi: 10.4049/jimmunol.0901005
|
[67] |
Fella E, Sokratous K, Papacharalambous R, et al. Pharmacological stimulation of phagocytosis enhances amyloid plaque clearance; evidence from a transgenic mouse model of ATTR neuropathy. Front Mol Neurosci, 2017; 10: 138. doi: 10.3389/fnmol.2017.00138
|
[68] |
Michalon A, Hagenbuch A, Huy C, et al. A human antibody selective for transthyretin amyloid removes cardiac amyloid through phagocytic immune cells. Nat Commun, 2021; 12(1): 3142. doi: 10.1038/s41467-021-23274-x
|
[69] |
Pepys M B, Dash A C. Isolation of amyloid P component (protein AP) from normal serum as a calcium-dependent binding protein. Lancet, 1977; 1(8020): 1029-1031. http://www.onacademic.com/detail/journal_1000036178038010_b14f.html
|
[70] |
Pepys M B, Dyck R F, de Beer F C, et al. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol, 1979; 38(2): 284-293.
|
[71] |
Sorboni S G, Moghaddam H S, Jafarzadeh-Esfehani R, et al. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin Microbiol Rev, 2022; 35(1): e0033820. doi: 10.1128/CMR.00338-20
|
[72] |
Noguchi H, Ohta M, Wakasugi S, et al. Effect of the intestinal flora on amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Exp Anim, 2002; 51(4): 309-316. doi: 10.1538/expanim.51.309
|
[73] |
Murakami T, Yi S, Maeda S, et al. Effect of serum amyloid P component level on transthyretin-derived amyloid deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Am J Pathol, 1992; 141(2): 451-456.
|
[74] |
Terry C J, Damas A M, Oliveira P, et al. Structure of Met30 variant of transthyretin and its amyloidogenic implications. The EMBO Journal, 1993; 12(2): 735-741. doi: 10.1002/j.1460-2075.1993.tb05707.x
|
[75] |
Ohta M, Sugano A, Hatano N, et al. Co-precipitation molecules hemopexin and transferrin may be key molecules for fibrillogenesis in TTR V30M amyloidogenesis. Transgenic Res, 2018; 27(1): 15-23. doi: 10.1007/s11248-017-0054-x
|
[76] |
Zhao G, Li Z, Araki K, et al. Inconsistency between hepatic expression and serum concentration of transthyretin in mice humanized at the transthyretin locus. Genes Cells, 2008; 13(12): 1257-1268. doi: 10.1111/j.1365-2443.2008.01242.x
|
[77] |
Liu L, Suzuki T, Shen J, et al. Rescue of retinal morphology and function in a humanized mouse at the mouse retinol-binding protein locus. Lab Invest, 2017; 97(4): 395-408. doi: 10.1038/labinvest.2016.156
|
[78] |
Zanotti G, Cendron L, Folli C, et al. Structural evidence for native state stabilization of a conformationally labile amyloidogenic transthyretin variant by fibrillogenesis inhibitors. FEBS Lett, 2013; 587(15): 2325-2331. doi: 10.1016/j.febslet.2013.06.016
|
[79] |
Mu Y, Jin S, Shen J, et al. CHF5074 (CSP-1103) stabilizes human transthyretin in mice humanized at the transthyretin and retinol-binding protein loci. FEBS Lett, 2015; 589(7): 849-856. doi: 10.1016/j.febslet.2015.02.020
|
[80] |
Li Z, Kanazashi H, Tokashiki Y, et al. TTR exon-humanized mouse optimal for verifying new therapies for FAP. Biochem Biophys Res Commun, 2022; 599: 69-74. doi: 10.1016/j.bbrc.2022.02.035
|