Citation: | Sen-Feng Sun, Shao Zhu, Hai-Yan Cao, Yun-Bao Liu, Shi-Shan Yu. Tridepsides from the endophytic fungus colletotrichum gloeosporioides associated with a toxic medicinal plant tylophora ovata[J]. Frigid Zone Medicine, 2021, 1(1): 45-51. doi: 10.2478/fzm-2021-0006 |
[1] |
Liu Y B, Ding G Z, Li Y, et al. Structures and absolute configurations of penicillactones A–C from an endophytic microorganism, penicillium dangeardii pitt. Org. Lett, 2013; 15: 5206-5209. doi: 10.1021/ol4023485
|
[2] |
Liu Y B, Li Y, Qu J, et al. Eremophilane sesquiterpenes and polyketones produced by an endophytic guignardia fungus from the toxic plant gelsemium elegans. J. Nat. Prod, 2015; 78: 2149-2154. doi: 10.1021/np5009027
|
[3] |
Liu J Y, Zhao X, Liang X X, et al. Dothiorelone derivatives from an endophyte diaporthe pseudomangiferaea inhibit the activation of human lung fibroblasts MRC-5 cells. Fitoterapia, 2018; 127: 7-14. doi: 10.1016/j.fitote.2018.04.009
|
[4] |
Liu Y B, Li Y, Liu Z, et al. Sesquiterpenes from the endophyte glomerella cingulata. J. Nat. Prod, 2017; 80: 2609-2614. doi: 10.1021/acs.jnatprod.7b00054
|
[5] |
Liu Z, Zhao J Y, Sun S F, et al. Sesquiterpenes from an endophytic aspergillus flavus. J. Nat. Prod, 2019; 82: 1063-1071. doi: 10.1021/acs.jnatprod.8b01084
|
[6] |
Zou W X, Meng J C, Lu H, et al. Metabolities of colletorichum gloeosrioides, an endophytic fungus in Artemisia mongolica, J. Nat. Prod, 2000; 63: 1529-1530. doi: 10.1021/np000204t
|
[7] |
Bang S, Lee C, Kim S, et al. Neuroprotective glycosylated cyclic lipodepsipeptides, Colletotrichamides A-E, from a halophyte-associated fungus, Colletotrichu-m gloeosporioides JS419. J. Org. Chem, 2019; 84: 10999-11006. doi: 10.1021/acs.joc.9b01511
|
[8] |
Luo Y P, Zheng C J, Chen G Y, et al. Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides. J. Antibiot, 2019; 72: 513-517. doi: 10.1038/s41429-019-0178-8
|
[9] |
Yang Z D, Li Z J, Zhao J W, et al. Secondary metabolites and PI3K inhibitory activity of Colletotrichum gloeosporioides, a fungal endophyte of Uncaria rhynchophylla. Curr. Microbiol, 2019; 76: 904-908. doi: 10.1007/s00284-019-01707-7
|
[10] |
Pamela N K, Sergi H A, Armelle T T, et al. Augustin, Colletotrin: a sesquiterpene lactone from the endophytic fungus Colletotrichum gloeosporioides associated with Trichilia monadelpha. J. Chem. Sci, 2017; 72: 697-703. http://www.degruyter.com/view/j/znb.2017.72.issue-10/znb-2017-0058/znb-2017-0058.xml?format=INT
|
[11] |
Vanessa M C, Maria L Z, Ioanis H L, et al. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champac. Molecules, 2014; 19: 19243-19252. doi: 10.3390/molecules191119243
|
[12] |
Inacio M L, Silva G H, Teles H L, et al. Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem. Syst. Ecol, 2006; 34: 822-824. doi: 10.1016/j.bse.2006.06.007
|
[13] |
Liu H X, Tan H B, Chen Y C, et al. Secondary metabolites from the colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat. Prod. Rep, 2018; 32: 2360-2365. doi: 10.1080/14786419.2017.1410810
|
[14] |
Andre A, Wojtowicz N, Toure K, et al. New acorane sesquiterpenes isolated from the endophytic fungus Colletotrichum gloeosporioides SNB-GSS07. Tetrahedron. Lett, 2017; 58: 1269-1272. doi: 10.1016/j.tetlet.2017.02.024
|
[15] |
Chen X W, Yang Z D, Sun J H, et al. Colletotrichine A, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Nat. Prod. Rep, 2018; 32: 880-884. doi: 10.1080/14786419.2017.1365071
|
[16] |
Li Y, Wei W, Wang R L, et al. Colletolides A and B, two new γ-butyrolactone derivatives from the endophytic fungus Colletotrichum gloeosporioide. Phytochem. Lett, 2019; 33: 90-93. doi: 10.1016/j.phytol.2019.08.004
|
[17] |
Zhao J Y, Wang X J, Liu Z, et al. Nonadride and spirocyclic anhydride derivatives from the plant endophytic fungus Talaromyces purpurogenus. J. Nat. Prod, 2019; 82: 2953-2962. doi: 10.1021/acs.jnatprod.9b00210
|
[18] |
Huneck S, Porzel A, Schmidt J, et al. A tridepside from Umbilicaria crustulosa. Phytochemistry, 1993; 32: 475-477. doi: 10.1016/S0031-9422(00)95022-2
|
[19] |
Zou W X, Meng J C, Lu H, et al. Metabolites of colletotrichum gloeosporioides, an endophytic fungus in artemisia mongolica. J. Nat. Prod, 2000; 63: 1529-1530. doi: 10.1021/np000204t
|
[20] |
Gao T, Cao F, Yu H, et al. Secondary metabolites from the marine fungus Aspergillus sydowii. Chem. Nat. Compd, 2017; 53: 1204-1207. doi: 10.1007/s10600-017-2241-7
|
[21] |
Pedras M S, Yu Y, Liu J, et al. Metabolites produced by the phytopathogenic fungus Rhizoctonia solani: isolation, chemical structure determination, syntheses and bioactivity. Ztschrift. für Naturforschung, 2005; 60: 9-10. http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fznc.2005.60.issue-9-10$002fznc-2005-9-1010$002fznc-2005-9-1010.pdf/znc-2005-9-1010.pdf?t:ac=j$002fznc.2005.60.issue-9-10$002fznc-2005-9-1010$002fznc-2005-9-1010.xml
|
[22] |
Gubiani J R, Teles H L, Silva G H, et al. Cyclo-(TRP-PHE) diketopiperazines from the endophytic fungus Aspergillus versicolor isolated from Piper aduncum. Quim. Nova, 2017; 40: 138-142. http://quimicanova.sbq.org.br/audiencia_pdf.asp?aid2=6521&nomeArquivo=AR20160256.pdf
|
[23] |
Evidente A, Iacobellis N S, Sisto A. Isolation of indole-3-acetic acid methyl ester, a metabolite of indole-3-acetic acid from Pseudomonas amygdali. Experientia, 1993; 49: 182-183. doi: 10.1007/BF01989428
|
[24] |
Zucconi L, Canini F, Temporiti M E, et al. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. Int. J. Env. Res. Pub. He, 2020; 17: 6459. doi: 10.3390/ijerph17186459
|
[25] |
Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type Ⅱ. Curr. Top. Med. Chem, 2019; 19: 246-263. doi: 10.2174/1568026619666190201152153
|
[26] |
Sharma B, Xing L X, Yang F, et al. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem, 2020; 199: 112376. doi: 10.1016/j.ejmech.2020.112376
|