| Citation: | Qihui Chen, Jinghan Lin, Qingling Zhai, Qijun Yu, Yonghui Pan. Circular RNA signatures in vestibular migraine and migraine from cold regions: Preliminary mechanistic insights[J]. Frigid Zone Medicine, 2025, 5(4): 193-205. doi: 10.1515/fzm-2025-0022 |
| [1] |
Dong L, Dong W, Jin Y, et al. The global burden of migraine: A 30-year trend review and future projections by age, sex, country, and region. Pain Ther, 2025; 14(1): 297-315. doi: 10.1007/s40122-024-00690-7
|
| [2] |
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 2019; 18(5): 459-480. doi: 10.1016/S1474-4422(18)30499-X
|
| [3] |
Formeister E J, Rizk H G, Kohn M A, et al. The epidemiology of vestibular migraine: A population-based survey study. Otol Neurotol, 2018; 39(8): 1037-1044. doi: 10.1097/MAO.0000000000001900
|
| [4] |
Furman J M, Marcus D A, Balaban C D. Vestibular migraine: Clinical aspects and pathophysiology. Lancet Neurol, 2013; 12(7): 706-715. doi: 10.1016/S1474-4422(13)70107-8
|
| [5] |
Ye S, Gao Y, Lin Y, et al. Ambient nitrogen dioxide, temperature exposure, and migraine incidence: A large prospective cohort study. Headache, 2025; 65(8): 40859714. doi: 10.1111/head.15037
|
| [6] |
Li W, Bertisch S M, Mostofsky E, et al. Weather, ambient air pollution, and risk of migraine headache onset among patients with migraine. Environ Int, 2019; 132: 105100. doi: 10.1016/j.envint.2019.105100
|
| [7] |
Scheidt J, Koppe C, Rill S, et al. Influence of temperature changes on migraine occurrence in Germany. Int J Biometeorol, 2013; 57(4): 649-654. doi: 10.1007/s00484-012-0582-2
|
| [8] |
Zhang J, Luo Z, Zheng Y, et al. CircRNA as an Achilles heel of cancer: Characterization, biomarker and therapeutic modalities. J Transl Med, 2024; 22(1): 752. doi: 10.1186/s12967-024-05562-4
|
| [9] |
Misir S, Wu N, Yang B B. Specific expression and functions of circular RNAs. Cell Death Differ, 2022; 29(3): 481-491. doi: 10.1038/s41418-022-00948-7
|
| [10] |
Yang L, Han B, Zhang Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation, 2020; 142(6): 556-574. doi: 10.1161/CIRCULATIONAHA.120.045765
|
| [11] |
García-Domínguez M. Role of ncRNAs in the development of chronic pain. Noncoding RNA, 2025; 11(4): 51. doi: 10.3390/ncrna11040051
|
| [12] |
Lin J, Shi S, Chen Q, et al. Differential expression and bioinformatic analysis of the circRNA expression in migraine patients. Biomed Res Int, 2020; 2020: 4710780. doi: 10.1155/2020/4710780
|
| [13] |
Song B, Fu J, Cheng J, et al. Circular RNA circFat3 as a biomarker for construction of postmortem interval Estimation models in mouse brain tissues at multiple temperatures. Sci Rep, 2025; 15(1): 21577. doi: 10.1038/s41598-025-07998-0
|
| [14] |
Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia, 2013; 33(9): 629-808. doi: 10.1177/0333102413485658
|
| [15] |
Chen H, Tang X, Li J, et al. IL-17 crosses the blood-brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine. J Headache Pain, 2022; 23(1): 1. doi: 10.1186/s10194-021-01374-9
|
| [16] |
Gaboyard-Niay S, Travo C, Saleur A, et al. Correlation between afferent rearrangements and behavioral deficits after local excitotoxic insult in the mammalian vestibule: A rat model of vertigo symptoms. Dis Model Mech, 2016; 9(10): 1181-1192. doi: 10.1242/dmm.024521
|
| [17] |
Chaplan S R, Bach F W, Pogrel J W, et al. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods, 1994; 53(1): 55-63. doi: 10.1016/0165-0270(94)90144-9
|
| [18] |
Cohen J M, Bigal M E, Newman L C. Migraine and vestibular symptoms-identifying clinical features that predict vestibular migraine. Headache, 2011; 51(9): 1393-1397. doi: 10.1111/j.1526-4610.2011.01934.x
|
| [19] |
Saldaña-Ruíz S, Soler-Martín C, Llorens J. Role of CYP2E1-mediated metabolism in the acute and vestibular toxicities of nineteen nitriles in the mouse. Toxicol Lett, 2012; 208(2): 125-132. doi: 10.1016/j.toxlet.2011.10.016
|
| [20] |
Li H, Huang Y, Chen Q, et al. Effect of activated autophagy on an animal model of vestibular migraine-like attacks. Exp Neurol, 2025; 392: 115366. doi: 10.1016/j.expneurol.2025.115366
|
| [21] |
Wen Q, Wang Y, Pan Q, et al. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J Neuroinflammation, 2021; 18(1): 287. doi: 10.1186/s12974-021-02342-5
|
| [22] |
Ashina M. Migraine. N Engl J Med, 2020; 383(19): 1866-1876. doi: 10.1056/NEJMra1915327
|
| [23] |
Espinosa-Sanchez J M, Lopez-Escamez J A. New insights into pathophysiology of vestibular migraine. Front Neurol, 2015; 6: 12. doi: 10.3389/fneur.2015.00012
|
| [24] |
Muhammed T M, Jasim S A, Uthirapathy S, et al. CircRNA-based therapeutics: A new frontier in neuroinflammation treatment. Mol Neurobiol, 2025; Published online: 40745517.
|
| [25] |
Chen J, Xiao S, Cui X, et al. Circ_0049472 downregulation relieves Amyloid-β-induced neuronal injury by modulating PDE4A expression via targeting miR-22-3p in Alzheimer's disease. Metab Brain Dis, 2025; 40(7): 252. doi: 10.1007/s11011-025-01652-4
|
| [26] |
Liu Q, Chen M, Cai X, et al. Role of circ_0002590 in neuroinflammation via the miR-1184/NLRP1 axis in painful diabetic neuropathy. Exp Clin Endocrinol Diabetes, 2025; 133(8): 415-424. doi: 10.1055/a-2676-1452
|
| [27] |
Zuo L, Xie J, Liu Y, et al. Down-regulation of circular RNA CDC14A peripherally ameliorates brain injury in acute phase of ischemic stroke. J Neuroinflammation, 2021; 18(1): 283. doi: 10.1186/s12974-021-02333-6
|
| [28] |
Dziadkowiak E, Baczyńska D, Wieczorek M, et al. MiR-31-5p as a potential circulating biomarker and tracer of clinical improvement for chronic inflammatory demyelinating polyneuropathy. Oxid Med Cell Longev, 2023; 2023: 2305163. doi: 10.1155/2023/2305163
|
| [29] |
Liu Y, Wang L, Zhou C, et al. MiR-31-5p regulates the neuroinflammatory response via TRAF6 in neuropathic pain. Biol Direct, 2024; 19(1): 10. doi: 10.1186/s13062-023-00434-1
|
| [30] |
Zhao J, Xu H, Duan Z, et al. MiR-31-5p regulates 14-3-3 ɛ to inhibit prostate cancer 22RV1 cell survival and proliferation via PI3K/AKT/Bcl-2 signaling pathway. Cancer Manag Res, 2020; 12: 6679-6694. doi: 10.2147/CMAR.S247780
|
| [31] |
Wang W, Tang L, Li Q, et al. Overexpression of miR-31-5p inhibits human chordoma cells proliferation and invasion by targeting the oncogene c-Met through suppression of AKT/PI3K signaling pathway. Int J Clin Exp Pathol, 2017; 10(7): 8000-8009.
|
| [32] |
Wang Y, Cella M, Mallinson K, et al. TREM2 lipid sensing sustains the microglial response in an Alzheimer's disease model. Cell, 2015; 160(6): 1061-1071. doi: 10.1016/j.cell.2015.01.049
|
| [33] |
Bayraktaroglu I, Ortí-Casañ N, Van Dam D, et al. Systemic inflammation as a central player in the initiation and development of Alzheimer's disease. Immun Ageing, 2025; 22(1): 33. doi: 10.1186/s12979-025-00529-5
|
| [34] |
Fan Z, Su D, Li Z C, et al. Metformin attenuates central sensitization by regulating neuroinflammation through the TREM2-SYK signaling pathway in a mouse model of chronic migraine. J Neuroinflammation, 2024; 21(1): 318. doi: 10.1186/s12974-024-03313-2
|
| [35] |
Chen S, Peng J, Sherchan P, et al. TREM2 activation attenuates neuroinflammation and neuronal apoptosis via PI3K/Akt pathway after intracerebral hemorrhage in mice. J Neuroinflammation, 2020; 17(1): 168. doi: 10.1186/s12974-020-01853-x
|
| [36] |
Han X, Cheng X, Xu J, et al. Activation of TREM2 attenuates neuroinflammation via PI3K/Akt signaling pathway to improve postoperative cognitive dysfunction in mice. Neuropharmacology, 2022; 219: 109231. doi: 10.1016/j.neuropharm.2022.109231
|
| [37] |
Nassini R, Materazzi S, Benemei S, et al. The TRPA1 channel in inflammatory and neuropathic pain and migraine. Rev Physiol Biochem Pharmacol, 2014; 167: 1-43. doi: 10.1007/112_2014_18
|
| [38] |
Yue L, Xu H. TRP channels in health and disease at a glance. J Cell Sci, 2021; 134(13): jcs258372. doi: 10.1242/jcs.258372
|
| [39] |
Strassman A, Mason P, Moskowitz M, et al. Response of brainstem trigeminal neurons to electrical stimulation of the dura. Brain Res, 1986; 379(2): 242-250. doi: 10.1016/0006-8993(86)90777-8
|
| [40] |
Weng J, Liu Q, Li C, et al. TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury. Sci Total Environ, 2024; 918: 170668. doi: 10.1016/j.scitotenv.2024.170668
|
| [41] |
Luo Q Q, Wang B, Chen X, et al. Acute stress induces visceral hypersensitivity via glucocorticoid receptor-mediated membrane insertion of TRPM8: Involvement of a non-receptor tyrosine kinase Pyk2. Neurogastroenterol Motil, 2020; 32(10): 1514-1528. doi: 10.1111/nmo.13877
|
| [42] |
Kelbert J, Tobin J A. The effect of ambient temperature on migraine disease: A scoping review. Brain Behav, 2025; 15(8): e70708. doi: 10.1002/brb3.70708
|
| [43] |
Zhai Q, Chen Q, Zhang N, et al. Exploring vestibulocerebellum-vestibular nuclei-spinal trigeminal nucleus causals communication and
|
| [44] |
TRPV2 ion channel in a mouse model of vestibular migraine. J Headache Pain, 2025; 26(1): 47.
|
| [45] |
Hanan M, Soreq H, Kadener S. CircRNAs in the brain. RNA Biol, 2017; 14(8): 1028-1034. doi: 10.1080/15476286.2016.1255398
|