Citation: | Jiayu Zhu, Jiaqi Zhang, Qi Yu, Liyan Liu, Rennan Feng. Association of dietary phytosterols with prevalence of metabolic dysfunction-associated fatty liver disease in adult population of Northeastern China: An internet-based cross-sectional study[J]. Frigid Zone Medicine, 2025, 5(1): 50-57. doi: 10.1515/fzm-2025-0005 |
[1] |
Vernon G, Baranova A, Younossi Z. M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther, 2011; 34(3): 274-285. doi: 10.1111/j.1365-2036.2011.04724.x
|
[2] |
Younossi Z, Tacke F, Arrese M, et al. Global Perspectives on Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis. Hepatology, 2019; 69(6): 2672-2682. doi: 10.1002/hep.30251
|
[3] |
Pais R, Barritt A S T, Calmus Y, et al. MAFLD and liver transplantation: Current burden and expected challenges. J Hepatol, 2016; 65(6): 1245-1257. doi: 10.1016/j.jhep.2016.07.033
|
[4] |
Huebbe P, Bilke S, Rueter J, et al. Human APOE4 protects high-fat and high-sucrose diet fed targeted replacement mice against fatty liver disease compared to APOE3. Aging Dis, 2024; 15(1): 259-281. doi: 10.14336/AD.2023.0530
|
[5] |
Paik J. M, Golabi P, Younossi Y, et al. The growing burden of disability related to nonalcoholic fatty liver disease: data from the global burden of disease 2007-2017. Hepatol Commun, 2020; 4(12): 1769-1780. doi: 10.1002/hep4.1599
|
[6] |
Golabi P, Paik J M, Alqahtani S, et al. Burden of non-alcoholic fatty liver disease in Asia, the Middle East and North Africa: data from global burden of disease 2009-2019. J Hepatol, 2021; 75(4): 795-809. doi: 10.1016/j.jhep.2021.05.022
|
[7] |
Adams L A, Anstee Q M, Tilg H, et al. Non-alcoholic fatty liver disease and its relationship with cardiovascular disease and other extrahepatic diseases. Gut, 2017; 66(6): 1138-1153. doi: 10.1136/gutjnl-2017-313884
|
[8] |
Bedogni G, Miglioli L, Masutti F, et al. Prevalence of and risk factors for nonalcoholic fatty liver disease: the Dionysos nutrition and liver study. Hepatology, 2005; 42(1): 44-52. doi: 10.1002/hep.20734
|
[9] |
Liu S, Liu Y, Wan B, et al. Association between Vitamin D status and non-alcoholic fatty liver disease: a population-based study. J Nutr Sci Vitaminol (Tokyo), 2019; 65(4): 303-308. doi: 10.3177/jnsv.65.303
|
[10] |
Machado V A, Santisteban A R N, Martins C M, et al. Effects of phytosterol supplementation on lipoprotein subfractions and LDL particle quality. Sci Rep, 2024; 14(1): 11108. doi: 10.1038/s41598-024-61897-4
|
[11] |
Nattagh-Eshtivani E, Barghchi H, Pahlavani N, et al. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytother Res, 2022; 36(1): 299-322. doi: 10.1002/ptr.7312
|
[12] |
Cusack L K, Fernandez M L, Volek J S. The food matrix and sterol characteristics affect the plasma cholesterol lowering of phytosterol/ phytostanol. Adv Nutr, 2013; 4(6): 633-643. doi: 10.3945/an.113.004507
|
[13] |
Ding X, Xu Y, Nie P, et al. Changes in the serum metabolomic profiles of subjects with MAFLD in response to n-3 PUFAs and phytosterol ester: a double-blind randomized controlled trial. Food Funct, 2022; 13(9): 5189-5201. doi: 10.1039/D1FO03921K
|
[14] |
Song L, Qu D, Zhang Q, et al. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Sci Rep, 2017; 7: 41604. doi: 10.1038/srep41604
|
[15] |
Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of MAFLD development and therapeutic strategies. Nat Med, 2018; 24(7): 908-922. doi: 10.1038/s41591-018-0104-9
|
[16] |
Miettinen T A, Tilvis R S, Kesäniemi Y A. Serum plant sterols and cholesterol precursors reflect cholesterol absorption and synthesis in volunteers of a randomly selected male population. Am J Epidemiol, 1990; 131(1): 20-31. doi: 10.1093/oxfordjournals.aje.a115479
|
[17] |
Plat J, Hendrikx T, Bieghs V, et al. Protective role of plant sterol and stanol esters in liver inflammation: insights from mice and humans. PLoS One, 2014; 9(10): e110758. doi: 10.1371/journal.pone.0110758
|
[18] |
Sánchez-Crisóstomo I, Fernández-Martínez E, Cariño-Cortés R, et al. Phytosterols and triterpenoids for prevention and treatment of metabolic-related liver diseases and hepatocellular carcinoma. Curr Pharm Biotechnol, 2019; 20(3): 197-214. doi: 10.2174/1389201020666190219122357
|
[19] |
Xia M, Sun X, Zheng L, et al. Regional difference in the susceptibility of non-alcoholic fatty liver disease in China. BMJ Open Diab Res Ca, 2020; 8(1): e001311. doi: 10.1136/bmjdrc-2020-001311
|
[20] |
Jain R, Wade G, Ong I, et al. Determination of tissue contributions to the circulating lipid pool in cold exposure via systematic assessment of lipid profiles. J Lipid Res, 2022; 63(7): 100197. doi: 10.1016/j.jlr.2022.100197
|
[21] |
Song Z, Yang H, Huang X, et al. The spatiotemporal pattern and influencing factors of land surface temperature change in China from 2003 to 2019. Int J Appl Earth Obs Geoinf, 2021, 104: 102537.
|
[22] |
Ji X N, Huang M, Yao S H, et al. Refined grains intake in high fat, high protein, low carbohydrate and low energy levels subgroups and higher likelihood of abdominal obesity in Chinese population. Int J Food Sci Nutr, 2020; 71(8): 979-990. doi: 10.1080/09637486.2020.1746956
|
[23] |
Feng R N, Du S S, Chen Y, et al. An internet-based food frequency questionnaire for a large Chinese population. Asia Pac J Clin Nutr, 2016; 25(4): 841-848.
|
[24] |
Li Y C, Li C L, Qi J Y, et al. Relationships of dietary histidine and obesity in northern chinese adults, an internet-based cross-sectional study. Nutrients, 2016; 8(7). doi: 10.3390/nu8070420
|
[25] |
Uhlig C E, Seitz B, Eter N, et al. Efficiencies of Internet-based digital and paper-based scientific surveys and the estimated costs and time for different-sized cohorts. PLoS One, 2014; 9(10): e108441. doi: 10.1371/journal.pone.0108441
|
[26] |
Eslam M, Newsome P. N, Sarin S. K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol, 2020; 73(1): 202-209. doi: 10.1016/j.jhep.2020.07.045
|
[27] |
Keil A. P, Buckley J P, O'brien K M, et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect, 2020; 128(4): 47004. doi: 10.1289/EHP5838
|
[28] |
Simón J, Casado-Andrés M, Goikoetxea-Usandizaga N, et al. Nutraceutical properties of polyphenols against liver diseases. Nutrients, 2020; 12(11). doi: 10.3390/nu12113517
|
[29] |
Li Y C, Li C. L, Li R, et al. Associations of dietary phytosterols with blood lipid profiles and prevalence of obesity in Chinese adults, a cross-sectional study. Lipids Health Dis, 2018; 17(1): 54. doi: 10.1186/s12944-018-0703-y
|
[30] |
Kruse M, Kemper M, Gancheva S, et al. Dietary rapeseed oil supplementation reduces hepatic steatosis in obese men-a randomized controlled trial. Mol Nutr Food Res, 2020; 64(21): e2000419. doi: 10.1002/mnfr.202000419
|
[31] |
Kuwabara M, Sasaki J, Ouchi Y, et al. Higher cholesterol absorption marker at baseline predicts fewer cardiovascular events in elderly patients receiving hypercholesterolemia treatment: The KEEP Study. J Am Heart Assoc, 2024; 13(3): e031865. doi: 10.1161/JAHA.123.031865
|
[32] |
Jordão Candido C, Silva Figueiredo P, Del Ciampo Silva R, et al. Protective effect of α-linolenic acid on non-alcoholic hepatic steatosis and interleukin-6 and -10 in wistar rats. Nutrients, 2019; 12(1). doi: 10.3390/nu12010009
|
[33] |
Wang X, Wang Y, Xu W, et al. Dietary isoflavones intake is inversely associated with non-alcoholic fatty liver disease, hyperlipidaemia and hypertension. Int J Food Sci Nutr, 2022; 73(1): 60-70. doi: 10.1080/09637486.2021.1910630
|
[34] |
Song L, Zhao X G, Ouyang P L, et al. Combined effect of n-3 fatty acids and phytosterol esters on alleviating hepatic steatosis in nonalcoholic fatty liver disease subjects: a double-blind placebo-controlled clinical trial. Br J Nutr, 2020; 123(10): 1148-1158. doi: 10.1017/S0007114520000495
|
[35] |
Li X, Xin Y, Mo Y, et al. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules, 2022; 27(2): 523. doi: 10.3390/molecules27020523
|
[36] |
Lifsey H C, Kaur R, Thompson B H, et al. Stigmasterol stimulates transintestinal cholesterol excretion independent of liver X receptor activation in the small intestine. J Nutr Biochem, 2020; 76: 108263. doi: 10.1016/j.jnutbio.2019.108263
|
[37] |
Xin Y, Li X, Zhu X, et al. Stigmasterol protects against steatohepatitis induced by high-fat and high-cholesterol diet in mice by enhancing the alternative bile acid synthesis pathway. J Nutr, 2023; 153(7): 1903-1914. doi: 10.1016/j.tjnut.2023.05.026
|
[38] |
Jayaraman S, Devarajan N, Rajagopal P, et al. β-sitosterol circumvents obesity induced inflammation and insulin resistance by down-regulating IKKβ/NF-κB and JNK signaling pathway in adipocytes of type 2 diabetic rats. Molecules, 2021; 26(7): 2101. doi: 10.3390/molecules26072101
|
[39] |
Vezza T, Canet F, De Marañón A M, et al. Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants (Basel), 2020; 9(12): 1266. doi: 10.3390/antiox9121266
|
[40] |
Desai A J, Dong M, Miller L J. Beneficial effects of β-sitosterol on type 1 cholecystokinin receptor dysfunction induced by elevated membrane cholesterol. Clin Nutr, 2016; 35(6): 1374-1379. doi: 10.1016/j.clnu.2016.03.003
|
[41] |
Zhao J, Wang C, Shi X, et al. Modeling climatically suitable areas for soybean and their shifts across China. Agric Syst, 2021, 192: 103205.
|
[42] |
Wang G X, Ma Q H, Zhao T T, et al. Resources and production of hazelnut in China. Acta Horticulturae, 2018; (1226): 59-64.
|
[43] |
Han H, Xue T, Li J, et al. Plant sterol ester of α-linolenic acid improved non-alcoholic fatty liver disease by attenuating endoplasmic reticulum stress-triggered apoptosis via activation of the AMPK. J Nutr Biochem, 2022; 107: 109072. doi: 10.1016/j.jnutbio.2022.109072
|