Citation: | Nannan Tang, Jiatong Li, Zhuo Wang, Jinlu Zuo, Zifeng Zhang, Di Huang, Yannan Han, Yuqing Chen, Yilin Sun, Xiang Li, Ruxue Mu, Qingxue Ma, Jie Zhang, Jiaying Wu, He Wang, Hongxia Zhao, Xingli Dong, Zhiguo Wang, Yu Liu, Dan Zhao, Baofeng Yang. Small ubiquitin-like modifiers inhibitors lower blood pressure via ERK5/KLF2-dependent upregulation of the eNOS/NO pathway[J]. Frigid Zone Medicine, 2024, 4(4): 202-211. doi: 10.1515/fzm-2024-0020 |
[1] |
Mills K T, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol, 2020; 16(4): 223-237. doi: 10.1038/s41581-019-0244-2
|
[2] |
Poulter N R, Prabhakaran D, Caulfield M. Hypertension. Lancet, 2015; 386(9995): 801-812. doi: 10.1016/S0140-6736(14)61468-9
|
[3] |
Dehnavi S, Sadeghi M, Penson P E, et al. The role of protein SUMOylation in the pathogenesis of atherosclerosis. J Clin Med, 2019; 8(11): 1856. doi: 10.3390/jcm8111856
|
[4] |
Kukkula A, Ojala V K, Mendez L M, et al. Therapeutic potential of targeting the SUMO pathway in cancer. Cancers (Basel), 2021; 13(17): 4402. doi: 10.3390/cancers13174402
|
[5] |
Paudel R, Fusi L, Schmidt M. The MEK5/ERK5 pathway in health and disease. Int J Mol Sci, 2021; 22(14): 7594. doi: 10.3390/ijms22147594
|
[6] |
Roberts O L, Holmes K, Muller J, et al. ERK5 and the regulation of endothelial cell function. Biochem Soc Trans, 2009; 37(Pt 6): 1254-1259.
|
[7] |
Woo C H, Shishido T, Mcclain C, et al. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res, 2008; 102(5): 538-545. doi: 10.1161/CIRCRESAHA.107.156877
|
[8] |
Shishido T, Woo C H, Ding B, et al. Effects of MEK5/ERK5 association on small ubiquitin-related modification of ERK5: implications for diabetic ventricular dysfunction after myocardial infarction. Circ Res, 2008; 102(11): 1416-1425. doi: 10.1161/CIRCRESAHA.107.168138
|
[9] |
Erazo T, Espinosa-gil S, Dieguez-martinez N, et al. SUMOylation is required for ERK5 nuclear translocation and ERK5-mediated cancer cell proliferation. Int J Mol Sci, 2020; 21(6): 2203. doi: 10.3390/ijms21062203
|
[10] |
Paez-mayorga J, Chen A L, Kotla S, et al. Ponatinib activates an inflammatory response in endothelial cells via ERK5 SUMOylation. Front Cardiovasc Med, 2018; 5: 125. doi: 10.3389/fcvm.2018.00125
|
[11] |
Yang T, Shu F, Yang H, et al. YY1: A novel therapeutic target for diabetic nephropathy orchestrated renal fibrosis. Metabolism, 2019; 96: 33-45. doi: 10.1016/j.metabol.2019.04.013
|
[12] |
Wu W, Geng P, Zhu J, et al. KLF2 regulates eNOS uncoupling via Nrf2/HO-1 in endothelial cells under hypoxia and reoxygenation. Chem Biol Interact, 2019; 305: 105-111. doi: 10.1016/j.cbi.2019.03.010
|
[13] |
Huai R, Han X, Wang B, et al. Vasorelaxing and antihypertensive effects of 7, 8-dihydroxyflavone. Am J Hypertens, 2014; 27(5): 750-760. doi: 10.1093/ajh/hpt220
|
[14] |
Vertegaal A C O. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol, 2022; 23(11): 715-731. doi: 10.1038/s41580-022-00500-y
|
[15] |
Brown M D, Sacks D B. Protein scaffolds in MAP kinase signalling. Cell Signal, 2009; 21(4): 462-469. doi: 10.1016/j.cellsig.2008.11.013
|
[16] |
Ohashi Y, Kawashima S, Hirata K, et al. Hypotension and reduced nitric oxide-elicited vasorelaxation in transgenic mice overexpressing endothelial nitric oxide synthase. J Clin Invest, 1998; 102(12): 2061-2071. doi: 10.1172/JCI4394
|
[17] |
Komaravolu R K, Adam C, Moonen J R, et al. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovasc Res, 2015; 105(1): 86-95. doi: 10.1093/cvr/cvu236
|
[18] |
Fulton D J. Transcriptional and posttranslational regulation of eNOS in the endothelium. Adv Pharmacol, 2016; 77: 29-64.
|
[19] |
Pazoki R, Dehghan A, Evangelou E, et al. Genetic predisposition to high blood pressure and lifestyle factors: associations with midlife blood pressure levels and cardiovascular events. Circulation, 2018; 137(7): 653-661. doi: 10.1161/CIRCULATIONAHA.117.030898
|
[20] |
Weinberger M H. The cold pressor test: a new predictor of future hypertension? Arch Intern Med, 2008; 168(16): 1732. doi: 10.1001/archinte.168.16.1732
|
[21] |
Zhao Q, Gu D, Lu F, et al. Blood pressure reactivity to the cold pressor test predicts hypertension among Chinese adults: the gensalt study. Am J Hypertens, 2015; 28(11): 1347-1354. doi: 10.1093/ajh/hpv035
|
[22] |
Radin J M, Neems D, GogliA R, et al. Inverse correlation between daily outdoor temperature and blood pressure in six US cities. Blood Press Monit, 2018; 23(3): 148-152. doi: 10.1097/MBP.0000000000000322
|
[23] |
Kim J Y, Jung K Y, Hong Y S, et al. The relationship between cold exposure and hypertension. J Occup Health, 2003; 45(5): 300-306. doi: 10.1539/joh.45.300
|
[24] |
Lewington S, Li L, Sherliker P, et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank. J Hypertens, 2012; 30(7): 1383-1391. doi: 10.1097/HJH.0b013e32835465b5
|
[25] |
Fregly M J, Kikta D C, Threatte R M, et al. Development of hypertension in rats during chronic exposure to cold. J Appl Physiol (1985), 1989; 66(2): 741-749. doi: 10.1152/jappl.1989.66.2.741
|
[26] |
Kanayama N, Tsujimura R, She L, et al. Cold-induced stress stimulates the sympathetic nervous system, causing hypertension and proteinuria in rats. J Hypertens, 1997; 15(4): 383-389. doi: 10.1097/00004872-199715040-00009
|
[27] |
Pan Z, Zhuang J, Zhu C, et al. Impacts of cold-stress stimulation on mice pregnancy. Am J Hypertens, 2023; 36(6): 348-353. doi: 10.1093/ajh/hpad003
|
[28] |
Zhu Z, Zhu S, Zhu J, et al. Endothelial dysfunction in cold-induced hypertensive rats. Am J Hypertens, 2002; 15(2 Pt 1): 176-180.
|
[29] |
Chen P G, Sun Z. AAV Delivery of endothelin-1 shRNA attenuates cold-induced hypertension. Hum Gene Ther. 2017; 28(2): 190-199. doi: 10.1089/hum.2016.047
|
[30] |
Brackett C M, Blagg B S J. Current status of SUMOylation inhibitors. Curr Med Chem, 2021; 28(20): 3892-3912. doi: 10.2174/0929867327666200810135039
|
[31] |
Langston S P, Grossman S, England D, et al. Discovery of TAK-981, a first-in-class inhibitor of SUMO-activating enzyme for the treatment of cancer. J Med Chem, 2021; 64(5): 2501-2520. doi: 10.1021/acs.jmedchem.0c01491
|
[32] |
Chen Z, Cui Q, Cooper L, et al. Ginkgolic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci, 2021; 11(1): 45. doi: 10.1186/s13578-021-00564-x
|
[33] |
Qiu F, Dong C, Liu Y, et al. Pharmacological inhibition of SUMO-1 with ginkgolic acid alleviates cardiac fibrosis induced by myocardial infarction in mice. Toxicol Appl Pharmacol, 2018; 15(345): 1-9.
|
[34] |
Esparis-ogando A, Diaz-rodriguez E, Montero J C, et al. Erk5 participates in neuregulin signal transduction and is constitutively active in breast cancer cells overexpressing ErbB2. Mol Cell Biol, 2002; 22(1): 270-285. doi: 10.1128/MCB.22.1.270-285.2002
|
[35] |
Buschbeck M, Ullrich A. The unique C-terminal tail of the mitogen-activated protein kinase ERK5 regulates its activation and nuclear shuttling. J Biol Chem, 2005; 280(4): 2659-2667. doi: 10.1074/jbc.M412599200
|
[36] |
Nigro P, Abe J, Woo C H, et al. PKCzeta decreases eNOS protein stability via inhibitory phosphorylation of ERK5. Blood, 2010; 116(11): 1971-1979. doi: 10.1182/blood-2010-02-269134
|
[37] |
Angolano C, Kaczmarek E, Essayagh S, et al. A20/TNFAIP3 increases ENOS expression in an ERK5/KLF2-dependent manner to support endothelial cell health in the face of inflammation. Front Cardiovasc Med, 2021; 8: 651230. doi: 10.3389/fcvm.2021.651230
|
[38] |
Li Q, Chen Y, Zhang X, et al. Scutellarin attenuates vasospasm through the Erk5-KLF2-eNOS pathway after subarachnoid hemorrhage in rat. J Clin Neurosci, 2016; 34(2): 64-70.
|
[39] |
Lee G H, Park J S, Jin S W, et al. Betulinic acid induces eNOS expression via the AMPK-dependent KLF2 signaling pathway. J Agric Food Chem, 2020; 68(49): 14523-14530. doi: 10.1021/acs.jafc.0c06250
|
[40] |
Heo K S, Fujiwara K, Abe J. Disturbed-flow-mediated vascular reactive oxygen species induce endothelial dysfunction. Circ J, 2011; 75(12): 2722-2730. doi: 10.1253/circj.CJ-11-1124
|
[41] |
Suzawa M, Miranda D A, Ramos K A, et al. A gene-expression screen identifies a non-toxic sumoylation inhibitor that mimics SUMO-less human LRH-1 in liver. Elife, 2015; 44: e09003.
|