Citation: | Xinqiu Chu, Yuewen Yuan, Jiya Chen, Yanwei Yu, Yang Li. Clinical study of a new nutritional index for predicting long-term prognosis in patients with coronary atherosclerotic heart disease following percutaneous coronary intervention[J]. Frigid Zone Medicine, 2024, 4(3): 152-159. doi: 10.1515/fzm-2024-0016 |
[1] |
Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res, 2015; 46 (5): 328-338. doi: 10.1016/j.arcmed.2015.06.006
|
[2] |
Liu T D, Zheng Y Y, Tang J N, et al. Prognostic nutritional index as a novel predictor of Long-Term prognosis in patients with coronary artery disease after percutaneous coronary intervention. Clin Appl Thromb Hemost, 2022; 28: 1-8
|
[3] |
Wada H, Dohi T, Miyauchi K, et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J Cardiol, 2018; 72 (2): 155-161. doi: 10.1016/j.jjcc.2018.01.012
|
[4] |
Fan Y, He L, Zhou Y, et al. Predictive value of geriatric nutritional risk index in patients with coronary artery disease: a meta-analysis. Front Nutr, 2021; 8: 736884. doi: 10.3389/fnut.2021.736884
|
[5] |
Chen L, Huang Z, Lu J, et al. Impact of the malnutrition on mortality in elderly patients undergoing percutaneous coronary intervention. Clin Interv Aging, 2021; 16: 1347-1356. doi: 10.2147/CIA.S308569
|
[6] |
Wada H, Dohi T, Miyauchi K, et al. Prognostic impact of the geriatric nutritional risk index on long-term outcomes in patients who underwent percutaneous coronary intervention. Am J Cardiol, 2017; 119 (11): 1740-1745. doi: 10.1016/j.amjcard.2017.02.051
|
[7] |
Liu J, Huang Z, Huang H, et al. Malnutrition in patients with coronary artery disease: prevalence and mortality in a 46, 485 Chinese cohort study. Nutr Metab Cardiovasc Dis, 2022; 32 (5): 1186-1194. doi: 10.1016/j.numecd.2021.12.023
|
[8] |
Arero G, Arero A G, Mohammed S H, et al. Prognostic potential of the controlling nutritional status (CONUT) score in predicting all-cause mortality and major adverse cardiovascular events in patients with coronary artery disease: a Meta-Analysis. Front Nutr, 2022; 9: 850641. doi: 10.3389/fnut.2022.850641
|
[9] |
DoiS, Iwata H, Wada H, et al. A novel and simply calculated nutritional index serves as a useful prognostic indicator in patients with coronary artery disease. International Journal of Cardiology, 2018; 262: 92-98. doi: 10.1016/j.ijcard.2018.02.039
|
[10] |
Maruyama S, Ebisawa S, Miura T, et al. Impact of nutritional index on long-term outcomes of elderly patients with coronary artery disease: sub-analysis of the SHINANO 5 year registry. Heart Vessels, 2021; 36 (1): 7-13. doi: 10.1007/s00380-020-01659-0
|
[11] |
Kalyoncuoglu M, Katkat F, Biter H I, et al. Predicting one-year deaths and major adverse vascular events with the controlling nutritional status score in elderly patients with non-ST-elevated myocardial infarction undergoing percutaneous coronary Intervention. J Clin Med, 2021; 10 (11): 2247. doi: 10.3390/jcm10112247
|
[12] |
Raposeiras Roubin S, Abu Assi E, Cespon Fernandez M, et al. Prevalence and prognostic significance of malnutrition in patients with acute coronary syndrome. J Am Coll Cardiol, 2020; 76 (7): 828-840. doi: 10.1016/j.jacc.2020.06.058
|
[13] |
Dentali F, Nigro O, Squizzato A, et al. Impact of neutrophils to lymphocytes ratio on major clinical outcomes in patients with acute coronary syndromes: A systematic review and meta-analysis of the literature. International Journal of Cardiology, 2018; 266: 31-37. doi: 10.1016/j.ijcard.2018.02.116
|
[14] |
Wada H, Dohi T, Miyauchi K, et al. Pre-procedural neutrophil-tolymphocyte ratio and long-term cardiac outcomes after percutaneous coronary intervention for stable coronary artery disease. Atherosclerosis, 2017; 265: 35-40. doi: 10.1016/j.atherosclerosis.2017.08.007
|
[15] |
Ma Y C, Zuo L, Chen J H, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol, 2006; 17 (10): 2937-2944. doi: 10.1681/ASN.2006040368
|
[16] |
Nahm F S. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol, 2022; 75(1): 25-36. doi: 10.4097/kja.21209
|
[17] |
Malekmohammad K, Bezsonov E E, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms. Front Cardiovasc Med. 2021; 8: 707529. doi: 10.3389/fcvm.2021.707529
|
[18] |
Xie Y, Feng X, Gao Y, Zhan X, et al. Association of albumin to nonhigh-density lipoprotein cholesterol ratio with mortality in peritoneal dialysis patients. Ren Fail. 2024; 46(1): 2299601. doi: 10.1080/0886022X.2023.2299601
|
[19] |
Roche M, Rondeau P, Singh N R, et al. The antioxidant properties of serum albumin. FEBS Lett, 2008; 582 (13): 1783-1787. doi: 10.1016/j.febslet.2008.04.057
|
[20] |
Lapenna D, Ciofani G, Ucchino S, et al. Serum albumin and biomolecular oxidative damage of human atherosclerotic plaques. Clin Biochem, 2010; 43 (18): 1458-1460. doi: 10.1016/j.clinbiochem.2010.08.025
|
[21] |
Artigas A, Wernerman J, Arroyo V, et al. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care, 2016; 33: 62-70. doi: 10.1016/j.jcrc.2015.12.019
|
[22] |
Lin X, Ke F, Chen M. Association of albumin levels with the risk of intracranial atherosclerosis. BMC Neurol, 2023; 23 (1): 198. doi: 10.1186/s12883-023-03234-2
|
[23] |
Liao L Z, Zhang S Z, Li W D, et al. Serum albumin and atrial fibrillation: insights from epidemiological and mendelian randomization studies. Eur J Epidemiol, 2020; 35 (2): 113-122. doi: 10.1007/s10654-019-00583-6
|
[24] |
Jin X, Xiong S, Ju S Y, et al. Serum 25-Hydroxyvitamin D, albumin, and mortality among chinese older adults: a population-based longitudinal study. J Clin Endocrinol Metab, 2020; 105(8): 349.
|
[25] |
Kalyoncuoglu M, Durmus G. Relationship between C-reactive protein-to-albumin ratio and the extent of coronary artery disease in patients with non-ST-elevated myocardial infarction. Coron Artery Dis, 2020; 31(2): 130-136. doi: 10.1097/MCA.0000000000000768
|
[26] |
Kétlyn de Lima, Caryna Eurich Mazur, Mariana Abe Vicente Cavagnari, et al. Omega-3 supplementation effects on cardiovascular risk and inflammatory profile in chronic kidney disease patients in hemodialysis treatment: an intervention study. Clin Nutr ESPEN, 2023; 58: 144-151 doi: 10.1016/j.clnesp.2023.09.914
|
[27] |
Sproston N R, Ashworth J J. Role of C-Reactive protein at sites of inflammation and infection. Front Immunol, 2018; 9: 754. doi: 10.3389/fimmu.2018.00754
|
[28] |
Gao Y, Wang M, Wang R, et al. The predictive value of the hs-CRP/HDL-C ratio, an inflammation-lipid composite marker, for cardiovascular disease in middle-aged and elderly people: evidence from a large national cohort study. Lipids Health Dis, 2024; 23(1): 66. doi: 10.1186/s12944-024-02055-7
|
[29] |
Eldrup N, Kragelund C, Steffensen R, et al. Prognosis by C-reactive protein and matrix metalloproteinase-9 levels in stable coronary heart disease during 15 years of follow-up. Nutr Metab Cardiovasc Dis, 2012; 22 (8): 677-683. doi: 10.1016/j.numecd.2010.11.003
|
[30] |
Li X, Liu X-H, Nie S P, et al. Prognostic value of baseline C-reactive protein levels in patients undergoing coronary revascularization. Chinese Med J-Peking, 2010; 123 (13): 1628-1632. doi: 10.3760/cma.j.issn.0366-6999.2010.13.003
|
[31] |
Liu S, Jiang H, Dhuromsingh M, et al. Evaluation of C-reactive protein as predictor of adverse prognosis in acute myocardial infarction after percutaneous coronary intervention: a systematic review and meta-analysis from 18, 715 individuals. Front Cardiovasc Med, 2022; 9: 1013501. doi: 10.3389/fcvm.2022.1013501
|
[32] |
Bian C, Wu Y, Shi Y, et al. Predictive value of the relative lymphocyte count in coronary heart disease. Heart Vessels, 2010; 25 (6): 469-473. doi: 10.1007/s00380-010-0010-7
|
[33] |
Horne B D, Anderson J L, John J M, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol, 2005; 45 (10): 1638-1643. doi: 10.1016/j.jacc.2005.02.054
|
[34] |
Waleria T Fonzar, Francisco A Fonseca, et al. Atherosclerosis severity in patients with familial hypercholesterolemia: The role of T and B lymphocytes. Atheroscler Plus, 2022; 48: 27-36. doi: 10.1016/j.athplu.2022.03.002
|
[35] |
Wada H, Dohi T, Miyauchi K, et al. Prognostic impact of nutritional status assessed by the Controlling Nutritional Status score in patients with stable coronary artery disease undergoing percutaneous coronary intervention. Clin Res Cardiol, 2017; 106 (11): 875-883. doi: 10.1007/s00392-017-1132-z
|
[36] |
Olsen S J, Schirmer H, Bonaa K H, et al. Cardiac rehabilitation after percutaneous coronary intervention: results from a nationwide survey. Eur J Cardiovasc Nurs, 2018; 17 (3): 273-279. doi: 10.1177/1474515117737766
|
[37] |
Cruz Rodriguez J B, Alkhateeb H. Beta-Blockers, calcium channel clockers, and mortality in stable coronary artery disease. Curr Cardiol Rep, 2020; 22(3): 12. doi: 10.1007/s11886-020-1262-1
|
[38] |
Luo L, Li M, Xi Y, et al. C-reactive protein-albumin-lymphocyte index as a feasible nutrition-immunity-inflammation marker of the outcome of all-cause and cardiovascular mortality in elderly. Clin Nutr ESPEN, 2024; 63: 346-353. doi: 10.1016/j.clnesp.2024.06.054
|
[39] |
Lessomo F Y N, Fan Q, Wang Z Q, et al. The relationship between leukocyte to albumin ratio and atrial fibrillation severity. BMC Cardiovasc Disord, 2023; 23(1): 67. doi: 10.1186/s12872-023-03097-y
|