Volume 3 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Wanting Wei, Guanyu Zhang, Yongqiang Zhang, Li Zhang, Shuai Wu, Xi Li, Danfeng Yang. Research progress on adaptive modifications of the gut microflora and regulation of host glucose and lipid metabolism by cold stimulation[J]. Frigid Zone Medicine, 2023, 3(1): 13-21. doi: 10.2478/fzm-2023-0003
Citation: Wanting Wei, Guanyu Zhang, Yongqiang Zhang, Li Zhang, Shuai Wu, Xi Li, Danfeng Yang. Research progress on adaptive modifications of the gut microflora and regulation of host glucose and lipid metabolism by cold stimulation[J]. Frigid Zone Medicine, 2023, 3(1): 13-21. doi: 10.2478/fzm-2023-0003

Research progress on adaptive modifications of the gut microflora and regulation of host glucose and lipid metabolism by cold stimulation

doi: 10.2478/fzm-2023-0003
More Information
  • The gut microflora is a combination of all microbes in intestine and their microenvironment, and its change can sensitively reflect the relevant response of the body to external environment and remarkably affect body's metabolism as well. Recent studies have found that cold exposure affects the body's gut microflora, which can lead to changes in the body's metabolism of glucose and lipid. This review summarizes recent research on the effects of cold exposure on gut microbes and metabolism of glucose and lipid, aiming to provide some new ideas on the approaches and measures for the prevention and treatment of diabetes and obesity.

     

  • loading
  • [1]
    Pulgaron E R, Delamater A M. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep, 2014; 14(8): 508. doi: 10.1007/s11892-014-0508-y
    [2]
    Abuyassin B, Laher I. Obesity-linked diabetes in the Arab world: a review. East Mediterr Health J, 2015; 21(6): 420-439. doi: 10.26719/2015.21.6.420
    [3]
    Bhupathiraju S N, Hu F B. Epidemiology of obesity and diabetes and their cardiovascular complications. Circ Res, 2016; 118(11): 1723-1735. doi: 10.1161/CIRCRESAHA.115.306825
    [4]
    Chobot A, Górowska-Kowolik K, Sokołowska M, et al. Obesity and diabetes-Not only a simple link between two epidemics. Diabetes Metab Res Rev, 2018; 34(7): e3042. doi: 10.1002/dmrr.3042
    [5]
    Martin K, Mcleod E, Periard J, et al. The impact of environmental stress on cognitive performance: A systematic review. Hum Factors, 2019; 61(8): 1205-1246. doi: 10.1177/0018720819839817
    [6]
    Horie M, Miura T, Hirakata S, et al. Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim, 2017; 66(4): 405-416. doi: 10.1538/expanim.17-0021
    [7]
    Bibbò S, Ianiro G, Giorgio V, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci, 2016; 20(22): 4742-4749.
    [8]
    Morrison D J, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut microbes, 2016; 7(3): 189-200. doi: 10.1080/19490976.2015.1134082
    [9]
    Gomes A C, Hoffmann C, Mota J F. The human gut microbiota: Metabolism and perspective in obesity. Gut microbes, 2018; 9(4): 308-325.
    [10]
    Gomez De La Torre Canny S, Rawls J F. Baby, It's Cold Outside: Host-Microbiota relationships drive temperature adaptations. Cell Host Microbe, 2015; 18(6): 635-636. doi: 10.1016/j.chom.2015.11.009
    [11]
    Chevalier C, Stojanović O, Colin D J, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell, 2015; 163(6): 1360-1374. doi: 10.1016/j.cell.2015.11.004
    [12]
    Zheng J, Zhu T, Wang L, et al. Characterization of gut microbiota in prenatal cold stress offspring rats by 16s rrna sequencing. Animals (Basel), 2020; 10(9): 1619.
    [13]
    Sebastián Domingo J J, Sánchez Sánchez C. From the intestinal flora to the microbiome. Rev Esp Enferm Dig, 2018; 110(1): 51-56.
    [14]
    Luckey T D. Introduction to intestinal microecology. Am J Clin Nutr, 1972; 25(12): 1292-1294. doi: 10.1093/ajcn/25.12.1292
    [15]
    Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography. Nature, 2012; 486(7402): 222-227. doi: 10.1038/nature11053
    [16]
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010; 464(7285): 59-65. doi: 10.1038/nature08821
    [17]
    Hooper L V, Dan R L, Macpherson A J. Interactions Between the Microbiota and the Immune System. Science, 2012; 336(6086): 1268-1273. doi: 10.1126/science.1223490
    [18]
    Cani P D. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect, 2012; 18 Suppl 4: 50-53.
    [19]
    Holmes E, Li J V, Marchesi J R, et al. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab, 2012; 16(5): 559-564. doi: 10.1016/j.cmet.2012.10.007
    [20]
    Cryan J F, Dinan T G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci, 2012; 13(10): 701-712. doi: 10.1038/nrn3346
    [21]
    Leslie J L, Young V B. The rest of the story: the microbiome and gastrointestinal infections. Curr Opin Microbiol, 2015; 23: 121-125. doi: 10.1016/j.mib.2014.11.010
    [22]
    Sonnenburg J L, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature, 2016; 535(7610): 56-64. doi: 10.1038/nature18846
    [23]
    Sousa T, Paterson R, Moore V, et al. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm, 2008; 363(1-2): 1-25. doi: 10.1016/j.ijpharm.2008.07.009
    [24]
    Ryan A, Kaplan E, Nebel J C, et al. Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes. PloS One, 2014; 9(6): e98551. doi: 10.1371/journal.pone.0098551
    [25]
    Martínez-Del Campo A, Bodea S, Hamer H A, et al. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio, 2015; 6(2): e00042-e00015.
    [26]
    Levin B J, Huang Y Y, Peck S C, et al. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline. Science, 2017; 355(6325): eaai8386. doi: 10.1126/science.aai8386
    [27]
    Lippert K, Kedenko L, Antonielli L, et al. Gut microbiota dysbiosis associated with glucose metabolism disorders and the metabolic syndrome in older adults. Benef Microbes, 2017; 8(4): 545-556. doi: 10.3920/BM2016.0184
    [28]
    Zhang X, Shen D, Fang Z, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PloS One, 2013; 8(8): e71108. doi: 10.1371/journal.pone.0071108
    [29]
    Cefalu W T, Buse J B, Del Prato S, et al. Beyond metformin: safety considerations in the decision-making process for selecting a second medication for type 2 diabetes management: reflections from a diabetes care editors' expert forum. Diabetes Care, 2014; 37(9): 2647-2659. doi: 10.2337/dc14-1395
    [30]
    Viollet B, Guigas B, Sanz Garcia N, et al. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond), 2012; 122(6): 253-270. doi: 10.1042/CS20110386
    [31]
    Lee H, Ko G. Effect of metformin on metabolic improvement and gut microbiota. Appl Environ Microbiol, 2014; 80(19): 5935-5943. doi: 10.1128/AEM.01357-14
    [32]
    Forsythe P, Bienenstock J, Kunze W A. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol, 2014; 817: 115-133.
    [33]
    Erny D, Hrabě De Angelis A L, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci, 2015; 18(7): 965-977. doi: 10.1038/nn.4030
    [34]
    O'mahony S M, Clarke G, Borre Y E, et al. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res, 2015; 277: 32-48. doi: 10.1016/j.bbr.2014.07.027
    [35]
    Chen X, Eslamfam S, Fang L, et al. Maintenance of Gastrointestinal Glucose Homeostasis by the Gut-Brain Axis. Curr Protein Pept Sci, 2017; 18(6): 541-547. doi: 10.2174/1389203717666160627083604
    [36]
    Grundy S M. Metabolic syndrome update. Trends Cardiovasc Med, 2016; 26(4): 364-373. doi: 10.1016/j.tcm.2015.10.004
    [37]
    Katsiki N, Mikhailidis D P, Mantzoros C S. Non-alcoholic fatty liver disease and dyslipidemia: An update. Metabolism, 2016; 65(8): 1109-1123. doi: 10.1016/j.metabol.2016.05.003
    [38]
    Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord, 2019; 20(4): 461-472. doi: 10.1007/s11154-019-09512-0
    [39]
    Quiroga R, Nistal E, Estébanez B, et al. Exercise training modulates the gut microbiota profile and impairs inflammatory signaling pathways in obese children. Exp Mol Med, 2020; 52(7): 1048-1061. doi: 10.1038/s12276-020-0459-0
    [40]
    Velagapudi V R, Hezaveh R, Reigstad C S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res, 2010; 51(5): 1101-1112. doi: 10.1194/jlr.M002774
    [41]
    Cotillard A, Kennedy S P, Kong L C, et al. Dietary intervention impact on gut microbial gene richness. Nature, 2013; 500(7464): 585-588. doi: 10.1038/nature12480
    [42]
    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature, 2013; 500(7464): 541-546. doi: 10.1038/nature12506
    [43]
    Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006; 444(7122): 1027-1031. doi: 10.1038/nature05414
    [44]
    Den Besten G, Lange K, Havinga R, et al. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol, 2013; 305(12): G900-G910. doi: 10.1152/ajpgi.00265.2013
    [45]
    Kudoh K, Shimizu J, Wada M, et al. Effect of indigestible saccharides on B lymphocyte response of intestinal mucosa and cecal fermentation in rats. J Nutr Sci Vitaminol (Tokyo), 1998; 44(1): 103-112. doi: 10.3177/jnsv.44.103
    [46]
    Kim M, Qie Y, Park J, et al. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host Microbe, 2016; 20(2): 202-214. doi: 10.1016/j.chom.2016.07.001
    [47]
    Le Poul E, Loison C, Struyf S, et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem, 2003; 278(28): 25481-25489. doi: 10.1074/jbc.M301403200
    [48]
    Bjursell M, Admyre T, Göransson M, et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am J Physiol Endocrinol Metab, 2011; 300(1): E211-E220. doi: 10.1152/ajpendo.00229.2010
    [49]
    Lin H V, Frassetto A, Kowalik E J, Jr., et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS One, 2012; 7(4): e35240. doi: 10.1371/journal.pone.0035240
    [50]
    Farr S, Taher J, Adeli K. Central nervous system regulation of intestinal lipid and lipoprotein metabolism. Curr Opin Lipidol, 2016; 27(1): 1-7. doi: 10.1097/MOL.0000000000000254
    [51]
    Abdel-Haq R, Schlachetzki J C M, Glass C K, et al. Microbiome-microglia connections via the gut-brain axis. J Exp Med, 2019; 216(1): 41-59. doi: 10.1084/jem.20180794
    [52]
    Ahlman H, Nilsson. The gut as the largest endocrine organ in the body. Ann Oncol, 2001; 12 Suppl 2: S63-S68.
    [53]
    Aw W C, Towarnicki S G, Melvin R G, et al. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet, 2018; 14(11): e1007735. doi: 10.1371/journal.pgen.1007735
    [54]
    Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 2011; 469(7331): 543-547. doi: 10.1038/nature09646
    [55]
    Mollica M P, Mattace Raso G, Cavaliere G, et al. Butyrate Regulates Liver Mitochondrial Function, Efficiency, and Dynamics in Insulin-Resistant Obese Mice. Diabetes, 2017; 66(5): 1405-1418. doi: 10.2337/db16-0924
    [56]
    Bach Knudsen K E, Lærke H N, Hedemann M S, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients, 2018; 10(10): 1499. doi: 10.3390/nu10101499
    [57]
    Fillmore N, Jacobs D L, Mills D B, et al. Chronic AMP-activated protein kinase activation and a high-fat diet have an additive effect on mitochondria in rat skeletal muscle. J Appl Physiol (1985), 2010; 109(2): 511-520. doi: 10.1152/japplphysiol.00126.2010
    [58]
    Tarapacki P, Jørgensen L B, Sørensen J G, et al. Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. J Insect Physiol, 2021; 135: 104323. doi: 10.1016/j.jinsphys.2021.104323
    [59]
    Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora. Science, 2005; 308(5728): 1635-1638. doi: 10.1126/science.1110591
    [60]
    Wang B, Liu J, Lei R, et al. Cold exposure, gut microbiota, and hypertension: A mechanistic study. Sci Total Environ, 2022; 833: 155199. doi: 10.1016/j.scitotenv.2022.155199
    [61]
    Wang S P, Althoff D M. Phenotypic plasticity facilitates initial colonization of a novel environment. Evolution, 2019; 73(2): 303-316. doi: 10.1111/evo.13676
    [62]
    Westneat D F, Potts L J, Sasser K L, et al. Causes and Consequences of Phenotypic Plasticity in Complex Environments. Trends Ecol Evol, 2019; 34(6): 555-568. doi: 10.1016/j.tree.2019.02.010
    [63]
    Khakisahneh S, Zhang X Y, Nouri Z, et al. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems, 2020; 5(5): e00514-e00520.
    [64]
    Kurtz C C, Carey H V. Seasonal changes in the intestinal immune system of hibernating ground squirrels. Dev Comp Immunol, 2007; 31(4): 415-428. doi: 10.1016/j.dci.2006.07.003
    [65]
    Carey H V, Duddleston K N. Animal-microbial symbioses in changing environments. J Therm Biol, 2014; 44: 78-84. doi: 10.1016/j.jtherbio.2014.02.015
    [66]
    Niu Z, Xue H, Jiang Z, et al. Effects of temperature on intestinal microbiota and lipid metabolism in Rana chensinensis tadpoles. Environ Sci Pollut Res Int, 2022 Dec 19. doi: 10.1007/s11356-022-24709-8.Epubaheadofprint.
    [67]
    Dill-Mcfarland K A, Neil K L, Zeng A, et al. Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol, 2014; 23(18): 4658-4669. doi: 10.1111/mec.12884
    [68]
    Li B, Li L, Li M, et al. Microbiota depletion impairs thermogenesis of brown adipose tissue and browning of white adipose tissue. Cell Rep, 2019; 26(10): 2720-2737. doi: 10.1016/j.celrep.2019.02.015
    [69]
    Ramos-Romero S, Santocildes G, Piñol-Piñol D, et al. Implication of gut microbiota in the physiology of rats intermittently exposed to cold and hypobaric hypoxia. PloS One, 2020; 15(11): e0240686. doi: 10.1371/journal.pone.0240686
    [70]
    Ferreyra J A, Wu K J, Hryckowian A J, et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe, 2014; 16(6): 770-777. doi: 10.1016/j.chom.2014.11.003
    [71]
    Suárez-Zamorano N, Fabbiano S, Chevalier C, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med, 2015; 21(12): 1497-1501. doi: 10.1038/nm.3994
    [72]
    Wang J, Chen Y, Zhang W, et al. Akt activation protects liver cells from apoptosis in rats during acute cold exposure. Int J Biol Sci, 2013; 9(5): 509-517. doi: 10.7150/ijbs.5220
    [73]
    Meneghini A, Ferreira C, Abreu L C, et al. Cold stress effects on cardiomyocytes nuclear size in rats: light microscopic evaluation. Rev Bras Cir Cardiovasc, 2008; 23(4): 530-533. doi: 10.1590/S0102-76382008000400013
    [74]
    Bozkurt A, Ghandour S, Okboy N, et al. Inflammatory response to cold injury in remote organs is reduced by corticotropin-releasing factor. Regul Pept, 2001; 99(2-3): 131-139. doi: 10.1016/S0167-0115(01)00239-7
    [75]
    Liu P, Yao R, Shi H, et al. Effects of cold-inducible RNA-binding protein (CIRP) on liver glycolysis during acute cold exposure in C57BL/6 Mice. Int J Mol Sci, 2019; 20(6): 1470. doi: 10.3390/ijms20061470
    [76]
    Leng J, Wang Z, Fu C L, et al. NF-κB and AMPK/PI3K/Akt signaling pathways are involved in the protective effects of Platycodon grandiflorum saponins against acetaminophen-induced acute hepatotoxicity in mice. Phytother Res, 2018; 32(11): 2235-2246. doi: 10.1002/ptr.6160
    [77]
    Wei X, Jia R, Yang Z, et al. NAD(+) /sirtuin metabolism is enhanced in response to cold-induced changes in lipid metabolism in mouse liver. FEBS Lett, 2020; 594(11): 1711-1725. doi: 10.1002/1873-3468.13779
    [78]
    Van Den Beukel J C, Boon M R, Steenbergen J, et al. Cold exposure partially corrects disturbances in lipid metabolism in a male mouse model of glucocorticoid excess. Endocrinology, 2015; 156(11): 4115-4128. doi: 10.1210/en.2015-1092
    [79]
    Grefhorst A, Van Den Beukel J C, Dijk W, et al. Multiple effects of cold exposure on livers of male mice. J Endocrinol, 2018; 238(2): 91-106. doi: 10.1530/JOE-18-0076
    [80]
    Kaisanlahti A, Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem, 2019; 75(1): 1-10. doi: 10.1007/s13105-018-0658-5
    [81]
    Seale P, Lazar M A. Brown fat in humans: turning up the heat on obesity. Diabetes, 2009; 58(7): 1482-1484. doi: 10.2337/db09-0622
    [82]
    Chondronikola M, Volpi E, Børsheim E, et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab, 2016; 23(6): 1200-1206. doi: 10.1016/j.cmet.2016.04.029
    [83]
    Sepa-Kishi D M, Ceddia R B. White and beige adipocytes: are they metabolically distinct? Horm Mol Biol Clin Investig, 2018; 33(2): 20180003.
    [84]
    Jankovic A, Golic I, Markelic M, et al. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation. J Physiol, 2015; 593(15): 3267-3280. doi: 10.1113/JP270805
    [85]
    Orava J, Nuutila P, Lidell M E, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell metab, 2011; 14(2): 272-279. doi: 10.1016/j.cmet.2011.06.012
    [86]
    Castillo-Campos A, Gutiérrez-Mata A, Charli J L, et al. Chronic stress inhibits hypothalamus-pituitary-thyroid axis and brown adipose tissue responses to acute cold exposure in male rats. J Endocrinol Invest, 2021; 44(4): 713-723. doi: 10.1007/s40618-020-01328-z
    [87]
    Oliveira R L, Ueno M, De Souza C T, et al. Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway. Am J Physiol Endocrinol Metab, 2004; 287(4): E686-E695. doi: 10.1152/ajpendo.00103.2004
    [88]
    Samuels S E, Thompson J R, Christopherson R J. Skeletal and cardiac muscle protein turnover during short-term cold exposure and rewarming in young rats. Am J Physiol, 1996; 270(6 Pt 2): R1231-R1239.
    [89]
    Manfredi L H, Zanon N M, Garófalo M A, et al. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. J Appl Physiol (1985), 2013; 115(10): 1496-1505. doi: 10.1152/japplphysiol.00474.2013
    [90]
    Xu Z, You W, Chen W, et al. Single-cell RNA sequencing and lipidomics reveal cell and lipid dynamics of fat infiltration in skeletal muscle. J Cachexia Sarcopenia Muscle, 2021; 12(1): 109-129. doi: 10.1002/jcsm.12643
    [91]
    Mcallister T A, Thompson J R, Samuels S E. Skeletal and cardiac muscle protein turnover during cold acclimation in young rats. Am J Physiol Regul Integr Comp Physiol, 2000; 278(3): R705-R711. doi: 10.1152/ajpregu.2000.278.3.R705
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (270) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return