Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Xin Xing, Shiqiang Wang. Mammalian hibernation: a unique model for medical research[J]. Frigid Zone Medicine, 2021, 1(2): 65-68. doi: 10.2478/fzm-2021-0008
Citation: Xin Xing, Shiqiang Wang. Mammalian hibernation: a unique model for medical research[J]. Frigid Zone Medicine, 2021, 1(2): 65-68. doi: 10.2478/fzm-2021-0008

Mammalian hibernation: a unique model for medical research

doi: 10.2478/fzm-2021-0008
More Information
  • Corresponding author: Shiqiang Wang, E-mail: wsq@pku.edu.cn
  • Received Date: 2021-01-28
  • Accepted Date: 2021-04-24
  • Available Online: 2021-12-01
  • Hibernation is an adaptive behavior for some small animals to survive cold winter. Hibernating mammals usually down-regulate their body temperature from ~37℃ to only a few degrees. During the evolution, mammalian hibernators have inherited unique strategies to survive extreme conditions that may lead to disease or death in humans and other non-hibernators. Hibernating mammals can not only tolerant deep hypothermia, hypoxia and anoxia, but also protect them against osteoporosis, muscle atrophy, heart arrhythmia and ischemia-reperfusion injury. Finding the molecular and regulatory mechanisms underlying these adaptations will provide novel ideas for treating related human diseases.

     

  • loading
  • [1]
    Andrews M T. Advances in molecular biology of hibernation in mammals. Bioessays, 2007; 29(5): 431-440. doi: 10.1002/bies.20560
    [2]
    Carey H V, Andrews M T, Martin S L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev, 2003; 83(4): 1153-1181. doi: 10.1152/physrev.00008.2003
    [3]
    Lyman C, Willis J, Malan A, et al. Hibernation and torpor in mammals and birds. New York: Academic press, 1982.
    [4]
    Yang M, Xing X, Guan S, et al. Hibernation patterns and changes of body temperature in Daurian ground squirrels (Spermophilus dauricus) during hibernation. Acta Theriologica Sinica, 2011; 31: 387-395. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SLXX201104011.htm
    [5]
    Johansson B W. The hibernator heart--nature's model of resistance to ventricular fibrillation. Cardiovascular Research, 1996; 31: 826-832. http://europepmc.org/abstract/MED/8763414
    [6]
    Wang S Q, Huang Y H, Liu K S, et al. Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology, 1997; 35(3): 193-200. doi: 10.1006/cryo.1997.2040
    [7]
    Egorov Y V, Glukhov A V, Efimov I R, et al. Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. Am J Physiol Heart Circ Physiol, 2012; 303(8): H1035-H1046. doi: 10.1152/ajpheart.00786.2011
    [8]
    Fedorov V V, Glukhov A V, Sudharshan S, et al. Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Heart Rhythm, 2008; 5(11): 1587-1596. doi: 10.1016/j.hrthm.2008.08.030
    [9]
    Wang S Q, Zhou Z Q. Medical significance of cardiovascular function in hibernating mammals. Clinical and Experimental Pharmacology & Physiology, 1999; 26(10): 837-839. http://www.ncbi.nlm.nih.gov/pubmed/10549417
    [10]
    Frare C, Williams C T, Drew K L. Thermoregulation in hibernating mammals: The role of the "thyroid hormones system". Mol Cell Endocrinol, 2021; 519(5): 111054. http://www.sciencedirect.com/science/article/pii/S0303720720303567
    [11]
    Takahashi T M, Sunagawa G A, Soya S, et al. A discrete neuronal circuit induces a hibernation-like state in rodents. Nature, 2020; 583(7814): 109-114. doi: 10.1038/s41586-020-2163-6
    [12]
    Hrvatin S, Sun S, Wilcox O F, et al. Neurons that regulate mouse torpor. Nature, 2020; 583: 115-121. doi: 10.1038/s41586-020-2387-5
    [13]
    Blackstone E, Morrison M, Roth M B. H2S induces a suspended animation-like state in mice. Science, 2005; 308: 518. doi: 10.1126/science.1108581
    [14]
    Tupone D, Madden C J, Morrison S F. Central activation of the A1 adenosine receptor (A1AR) induces a hypothermic, torpor-like state in the rat. J Neurosci, 2013; 33: 14512-14525. doi: 10.1523/JNEUROSCI.1980-13.2013
    [15]
    Jinka T R, Combs V M, Drew K L. Translating drug-induced hibernation to therapeutic hypothermia. ACS Chem Neurosci, 2015; 6: 899-904. doi: 10.1021/acschemneuro.5b00056
    [16]
    Nordrehaug J E. Sustained ventricular fibrillation in deep accidental hypothermia. British Medical Journal (Clinical Research Ed), 1982; 284: 867-868.
    [17]
    Physiology S O. The recovery of dogs from deep hypothermia. Acta Scientiarum Naturalium Universitatis Pekinensis, 1959; 5: 99-102.
    [18]
    Association A H. 2005 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Part 10.4: Hypothermia. Circulation, 2005; 112(Ⅳ): 136-138.
    [19]
    Wang L. Mammalian hibernation: an escape from the cold. Berlin: Springer-Verlag, 1988.
    [20]
    Kamm K E, Zatzman M L, Jones A W, et al. Maintenance of ion concentration gradients in the cold in aorta from rat and ground squirrel. Am J Physiol, 1979; 237: C17-C22. doi: 10.1152/ajpcell.1979.237.1.C17
    [21]
    Wang S Q, Cao H M, ZHOU Z Q. Temperature dependence of the myocardial excitability of ground squirrel and rat. J Thermal Biol, 1997; 22: 195-199. doi: 10.1016/S0306-4565(97)00010-7
    [22]
    Zhao M J, Zhao Y B, Wei J H. Cold tolerance of the membrane potentials in cardiac cells of the ground squirrel citellus dauricus. Sheng Li Xue Bao, 1988; 40: 36-42. http://www.ncbi.nlm.nih.gov/pubmed/3388062
    [23]
    Wang S, Zhou Z, Qian H. Temperature dependence of intracellular free calcium in cardiac myocytes from rat and ground squirrel measured by confocal microscopy. Sci China C Life Sci, 1999; 42: 293-299. doi: 10.1007/BF03183606
    [24]
    Wang S Q, Huang Y H, Zhou Z Q. Dependence of myocardial hypothermia resistance on sources of activator calcium. Cryobiol, 1997; 35: 193-200. doi: 10.1006/cryo.1997.2040
    [25]
    Li X C, Wei L, Zhang G Q, et al. Ca2+ cycling in heart cells from ground squirrels: adaptive strategies for intracellular Ca2+ homeostasis. PLoS One, 2011;6: e24787. doi: 10.1371/journal.pone.0024787
    [26]
    Chien S, Oeltgen P R, Diana J N, et al. Two-day preservation of major organs with autoperfusion multiorgan preparation and hibernation induction trigger. A preliminary report. J Thorac Cardiovasc Surg, 1991; 102: 224-234. doi: 10.1016/S0022-5223(19)36555-9
    [27]
    Biorck G, Johansson B, Schmid H. Reactions of hedgehogs, hibernating and non-hibernating, to the inhalation of oxygen, carbon dioxide and nitrogen. Acta Physiol Scand, 1956; 37: 71-83. doi: 10.1111/j.1748-1716.1956.tb01343.x
    [28]
    D'Alecy L G, Lundy E F, Kluger M J, et al. Beta-hydroxybutyrate and response to hypoxia in the ground squirrel, Spermophilus tridecimlineatus. Comp Biochem Physiol B, 1990; 96: 189-193. doi: 10.1016/0305-0491(90)90361-V
    [29]
    Drew K L, Wells M, McGee R, et al. Arctic ground squirrel neuronal progenitor cells resist oxygen and glucose deprivation-induced death. World J Biol Chem, 2016; 7: 168-177. doi: 10.4331/wjbc.v7.i1.168
    [30]
    Singhal N S, Bai M, Lee E M, et al. Cytoprotection by a naturally occurring variant of ATP5G1 in Arctic ground squirrel neural progenitor cells. Elife, 2020; 9. http://www.ncbi.nlm.nih.gov/pubmed/33050999
    [31]
    Kerrigan C L, Stotland M A. Ischemia reperfusion injury: a review. Microsurgery, 1993; 14: 165-175. doi: 10.1002/micr.1920140307
    [32]
    Dirksen M T, Laarman G J, Simoons M L, et al. Reperfusion injury in humans: a review of clinical trials on reperfusion injury inhibitory strategies. Cardiovasc Res, 2007; 74: 343-355. doi: 10.1016/j.cardiores.2007.01.014
    [33]
    Levitsky S. Protecting the myocardial cell during coronary revascularization. The William W. L. Glenn Lecture. Circulation, 2006; 114: I339-I343. http://www.ncbi.nlm.nih.gov/pubmed/16820597
    [34]
    Gao T L, Huang Y Z, Jin W. The resistance to ischemia-reperfusion injury of the isolated heart from hibernator Citellus dauricus. Acta Scientiarum Naturalium Universitatis Pekinensis, 1996; 32: 527-533. http://europepmc.org/abstract/cba/296798
    [35]
    Ou J, Ball J M, Luan Y, et al. iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell, 2018; 173: 851-863, e816. doi: 10.1016/j.cell.2018.03.010
    [36]
    Eagles D A, Jacques L B, Taboada J, et al. Cardiac arrhythmias during arousal from hibernation in three species of rodents. Am J Physiol, 1988; 254: R102-R108.
    [37]
    Johansson B W. Ventricular repolarization and fibrillation threshold in hibernating species. Eur Heart J, 1985; 6 Suppl D: 53-62. http://www.onacademic.com/detail/journal_1000038746440310_b6a7.html
    [38]
    Martin S L. Mammalian hibernation: a naturally reversible model for insulin resistance in man? Diab Vasc Dis Res, 2008; 5: 76-81. doi: 10.3132/dvdr.2008.013
    [39]
    Stott N L, Marino J S. High fat rodent models of type 2 diabetes: from rodent to human. Nutrients, 2020; 12. http://www.researchgate.net/publication/346554101_High_Fat_Rodent_Models_of_Type_2_Diabetes_From_Rodent_to_Human
    [40]
    Arinell K, Sahdo B, Evans A L, et al. Brown bears (Ursus arctos) seem resistant to atherosclerosis despite highly elevated plasma lipids during hibernation and active state. Clin Transl Sci, 2012; 5: 269-272. doi: 10.1111/j.1752-8062.2011.00370.x
    [41]
    Naito H K, Gerrity R G. Unusual resistance of the ground squirrel to the development of dietary-induced hypercholesterolemia and atherosclerosis. Experimental and molecular pathology, 1979; 31: 452-467. doi: 10.1016/0014-4800(79)90044-3
    [42]
    Ferris E, Gregg C. Parallel Accelerated Evolution in Distant Hibernators Reveals Candidate Cis Elements and Genetic Circuits Regulating Mammalian Obesity. Cell Rep, 2019; 29: 2608-2620, e2604. doi: 10.1016/j.celrep.2019.10.102
    [43]
    Cotton C J, Harlow H J. Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators. Physiol Biochem Zool, 2010; 83: 551-560. doi: 10.1086/650471
    [44]
    Lee K, Park J Y, Yoo W, et al. Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: proteomic and molecular assessment. Journal of cellular biochemistry, 2008; 104: 642-656. doi: 10.1002/jcb.21653
    [45]
    Wojda S J, McGee-Lawrence M E, Gridley R A, et al. Yellow-bellied marmots (Marmota flaviventris) preserve bone strength and microstructure during hibernation. Bone, 2012; 50: 182-188. doi: 10.1016/j.bone.2011.10.013
    [46]
    McGee-Lawrence M E, Carey H V, Donahue S W. Mammalian hibernation as a model of disuse osteoporosis: the effects of physical inactivity on bone metabolism, structure, and strength. Am J Physiol Regul Integr Comp Physiol, 2008; 295: R1999-R2014. doi: 10.1152/ajpregu.90648.2008
    [47]
    Gao Y F, Wang J, Wang H P, et al. Skeletal muscle is protected from disuse in hibernating dauria ground squirrels. Comp Biochem Physiol A Mol Integr Physiol, 2012; 161: 296-300. doi: 10.1016/j.cbpa.2011.11.009
    [48]
    Carey H V, Mangino M J, Southard J H. Changes in gut function during hibernation: implications for bowel transplantation and surgery. Gut, 2001; 49: 459-461. doi: 10.1136/gut.49.4.459
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1515) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return