留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

YBX1 inhibits mitochondrial-mediated apoptosis in ischemic heart through the PI3K/AKT signaling pathway

Fangfang Bi Miao Cao Yuquan Wang Qingming Pan Zehong Jing Danyang Bing Lifang Lyu Tong Yu Tianyu Li Xuelian Li Haihai Liang Hongli Shan Yuhong Zhou

Fangfang Bi, Miao Cao, Yuquan Wang, Qingming Pan, Zehong Jing, Danyang Bing, Lifang Lyu, Tong Yu, Tianyu Li, Xuelian Li, Haihai Liang, Hongli Shan, Yuhong Zhou. YBX1 inhibits mitochondrial-mediated apoptosis in ischemic heart through the PI3K/AKT signaling pathway[J]. Frigid Zone Medicine, 2024, 4(1): 51-64. doi: 10.2478/fzm-2024-0006
Citation: Fangfang Bi, Miao Cao, Yuquan Wang, Qingming Pan, Zehong Jing, Danyang Bing, Lifang Lyu, Tong Yu, Tianyu Li, Xuelian Li, Haihai Liang, Hongli Shan, Yuhong Zhou. YBX1 inhibits mitochondrial-mediated apoptosis in ischemic heart through the PI3K/AKT signaling pathway[J]. Frigid Zone Medicine, 2024, 4(1): 51-64. doi: 10.2478/fzm-2024-0006

YBX1 inhibits mitochondrial-mediated apoptosis in ischemic heart through the PI3K/AKT signaling pathway

doi: 10.2478/fzm-2024-0006
Funds: 

Science and technology project of Xiamen Medical College K2023-08

the National Natural Science Foundation of China 82170299

the National Natural Science Foundation of China 82003757

More Information
  • Figure  1.  YBX1 is downregulated in ischemic hearts and hypoxic cardiomyocytes. (A) Volcano plot of differentially expressed mRNAs from the GEO database (http://www.ncbi.nlm.nih.gov/geo), showing markedly downregulated YBX1 expression in MI mice compared to the Sham group. (B) The hierarchical clustering heat map. (C, D) YBX1 levels determined by RT-PCR and Western blot. *P < 0.05, **P < 0.01, N = 3-5 duplicates/group. (E, F) Downregulation of mRNA and protein levels of YBX1 in cultured neonatal mouse cardiomyocytes (NMCMs) after hypoxia treatment for 12 h relative to cells cultured under normoxic conditions. *P < 0.05, **P < 0.01, N = 3-5 duplicates/group. (G) Immunofluorescence displaying the changes of YBX1 expression and subcellular distribution (YBX1 in green, nucleus in blue). Scale bars: 10 µm. *P < 0.05, N = 5 duplicates/group. The data are presented as mean ± SEM.

    Figure  2.  Overexpression of YBX1 improves cardiac function in myocardial infarction (MI) mice. YBX1 was overexpressed by an AAV9 vector engineered to contain the full-length YBX1 gene in MI mice. (A) Experimental procedure. (B) Echocardiographic analysis of left ventricular dimensions and cardiac function in mice. (C) EF: ejection fraction (D) FS: fractional shortening of left ventricular diameter. (E) LVIDs: systolic left ventricular internal diameters. (F) LVIDd: diastolic left ventricular internal diameters. *P < 0.05, N = 5. (H) TTC staining. **P < 0.01, N = 5 duplicates/group. (H, I) Representative bands and statistical data on Bax and Bcl-2 expression, as determined by Western blot analysis. *P < 0.05, **P < 0.01, N = 3 duplicates/group.

    Figure  3.  Knockdown YBX1 aggravates cardiac dysfunction in myocardial infarction (MI) mice. YBX1 was knocked down via an AAV9 vector carrying a YBX1-specific shRNA in mice. (A) Experimental procedure. (B) Echocardiographic analysis of left ventricular dimensions and cardiac function in mice. (C) EF: ejection fraction (D) FS: fractional shortening of left ventricular diameter. (F) LVIDs: systolic left ventricular internal diameters. (F) LVIDd: diastolic left ventricular internal diameters. *P < 0.05, N = 5. (G) Representative images of TTC staining. **P < 0.01, N = 5 duplicates/group. (H, I) Representative bands and statistical data on Bax and Bcl-2 expression, as determined by Western blot analysis. *P < 0.05, N = 3 duplicates/group.

    Figure  4.  YBX1 suppresses cardiomyocyte apoptosis induced by hypoxia. (A) Viability of cardiomyocytes. *P < 0.05, N = 6 duplicates/group. (B) LDH content. *P < 0.05, N = 7 duplicates/group. (C, D) Representative Western blot bands and statistical data on Bax and Bcl-2 expression in NMCMs. *P < 0.05, N = 3 duplicates/group. (E) TUNEL photomicrographs of cardiomyocytes. Scale bar: 20 µm; **P < 0.01, N = 5 duplicates/group. The data are presented as mean ± SEM.

    Figure  5.  YBX1 preserves mitochondrial function in neonatal mouse cardiomyocytes (NMCMs) under hypoxic conditions. (A, B) Representative Western blot bands and statistical data on caspase-9 and caspase-3 expression in NMCMs. *P < 0.05, N = 3 duplicates/group. (C)ATP production. *P < 0.05, N = 6 duplicates/group. (D) Effects of YBX1 overexpression on ROS production. **P < 0.01, N = 6 duplicates/group. (E) Representative images of JC-1 staining for changes in mitochondrial membrane potential in NMCMs. *P < 0.05, N = 5 copies/group. The data are expressed as mean ± SEM.

    Figure  6.  Silencing YBX1 aggravates hypoxia-induced cardiomyocyte apoptosis. (A) Viability of cardiomyocytes. *P < 0.05, N = 6 duplicates/group. (B) LDH release. *P < 0.05, N = 8 duplicates/group. (C, D) Representative Western blot bands and statistical data on Bax and Bcl-2 expression in NMCMs. *P < 0.05, N = 3 duplicates/group. (E) Typical images of TUNEL staining of cardiomyocytes. Scale bar: 20 µm; *P < 0.05, **P < 0.01, N = 5 duplicates/group. The data are presented as mean ± SEM.

    Figure  7.  Knockdown of YBX1 aggravates mitochondrial dysfunction in hypoxic neonatal mouse cardiomyocytes (NMCMs). (A, B) Representative Western blot bands and statistical data on caspase-9 and caspase-3 expression in NMCMs. *P < 0.05, N = 3 duplicates/group. (C) ATP production. *P < 0.05, N = 6 duplicates/group. (D) Effects of YBX1 overexpression on ROS production. *P < 0.05, **P < 0.01, N = 6 duplicates/group. (E) Representative images of JC-1 staining in NMCMs. *P < 0.05, N = 5 copies/group. The data are expressed as mean ± SEM.

    Figure  8.  YBX1 inhibits cardiomyocyte apoptosis via the PI3K/AKT pathway. (A, B) KEGG pathway enrichment analyses on downregulated genes in NMCMs transfected with si-YBX1 relative to control cells. (C) Correlation between YBX1 and PI3K/AKT expressions. (D, E) Representative bands and statistical data on PI3K and AKT expression, as determined by Western blot analysis. The data are presented as fold changes normalized to the sham values. *P < 0.05, **P < 0.01, N = 3 duplicates/group. (F) Viability of cardiomyocytes. *P < 0.05, **P < 0.01, N = 8 duplicates/group. (G) LDH release. *P < 0.05, **P < 0.01, N = 8 duplicates/group. (H, I) Representative bands and statistical data on Bax and Bcl-2 expression, as determined by Western blot analysis. The data are presented as fold changes normalized to the sham values. *P < 0.05, N = 3 duplicates/group. (J) TUNEL assay for investigating the effect of YBX1 on apoptosis. Scale bar: 20 µm; *P < 0.05, **P < 0.01, N = 5. The data are expressed as mean ± SEM.

    Figure  9.  Schematic diagram depicting the protective mechanisms of YBX1 in myocardial infarction. YBX1 activates PI3K/AKT phosphorylation and inhibits the mitochondria dependent apoptosis.

  • [1] Yuan X, Pan J, Wen L, et al. MiR-144-3p enhances cardiac fibrosis after myocardial infarction by targeting PTEN. Front Cell Dev Biol, 2019; 7: 249. doi: 10.3389/fcell.2019.00249
    [2] Acharya D. Predictors of outcomes in myocardial infarction and cardiogenic shock. Cardiol Rev, 2018; 26(5): 255-266. doi: 10.1097/CRD.0000000000000190
    [3] Bai X, Yang C, Jiao L, et al. LncRNA MIAT impairs cardiac contractile function by acting on mitochondrial translocator protein TSPO in a mouse model of myocardial infarction. Signal Transduct Target Ther, 2021; 6(1): 172. doi: 10.1038/s41392-021-00538-y
    [4] Luo Y, Zhang Y, Han X, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine, 2022; 82: 104087. doi: 10.1016/j.ebiom.2022.104087
    [5] Lewington S, Li L, Sherliker P, et al. Seasonal variation in blood pressure and its relationship with outdoor temperature in 10 diverse regions of China: the China Kadoorie Biobank. J Hypertens, 2012; 30(7): 1383-1391. doi: 10.1097/HJH.0b013e32835465b5
    [6] Brennan P J, Greenberg G, Miall W E, et al. Seasonal variation in arterial blood pressure. Br Med J (Clin Res Ed), 1982; 285(6346): 919-923. doi: 10.1136/bmj.285.6346.919
    [7] Dong Y, Chen H, Gao J, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol, 2019; 136: 27-41. doi: 10.1016/j.yjmcc.2019.09.001
    [8] Elsässer A, Suzuki K, Lorenz-Meyer S, et al. The role of apoptosis in myocardial ischemia: a critical appraisal. Basic Res Cardiol, 2001; 96(3): 219-226. doi: 10.1007/s003950170052
    [9] Slee E A, Adrain C, Martin S J. Serial killers: ordering caspase activation events in apoptosis. Cell Death & Differentiation, 1999; 6(11): 1067-1074. doi: 10.1038/sj.cdd.4400601
    [10] Jose Corbalan J, Vatner D E, Vatner S F. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol, 2016; 111(3): 31.
    [11] Suresh P S, Tsutsumi R, Venkatesh T. YBX1 at the crossroads of non-coding transcriptome, exosomal, and cytoplasmic granular signaling. Eur J Cell Biol, 2018; 97(3): 163-167. doi: 10.1016/j.ejcb.2018.02.003
    [12] Cui Q, Wang C, Liu S, et al. YBX1 knockdown induces renal cell carcinoma cell apoptosis via Kindlin-2. Cell cycle (Georgetown, Tex.), 2021; 20(22): 2413-2427. doi: 10.1080/15384101.2021.1985771
    [13] Zhang H, Zheng W, Li D, et al. MiR-379-5p promotes chondrocyte proliferation via inhibition of PI3K/Akt Pathway by targeting YBX1 in osteoarthritis. Cartilage, 2022; 13(1): 19476035221074024. doi: 10.1177/19476035221074024
    [14] Hussain S A, Venkatesh T. YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells. Molecular Biology Reports, 2023; 50(4): 3413-3428. doi: 10.1007/s11033-023-08308-5
    [15] Lin F, Zeng Z, Song Y, et al. YBX-1 mediated sorting of miR-133 into hypoxia/reoxygenation-induced EPC-derived exosomes to increase fibroblast angiogenesis and MEndoT. Stem Cell Res Ther, 2019; 10(1): 263. doi: 10.1186/s13287-019-1377-8
    [16] Huang S, Li X, Zheng H, et al. Loss of super-enhancer-regulated circRNA nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 2019; 139(25): 2857-2876. doi: 10.1161/CIRCULATIONAHA.118.038361
    [17] Pham T P, Bink D I, Stanicek L, et al. Long Non-coding RNA Aerrie Controls DNA Damage Repair via YBX1 to Maintain Endothelial Cell Function. Front Cell Dev Biol, 2020; 8: 619079. doi: 10.3389/fcell.2020.619079
    [18] Varma E, Burghaus J, Schwarzl T, et al. Translational control of Ybx1 expression regulates cardiac function in response to pressure overload in vivo. Basic Res Cardiol, 2023; 118(1): 25. doi: 10.1007/s00395-023-00996-1
    [19] Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer, 2019; 18(1): 157. doi: 10.1186/s12943-019-1089-9
    [20] Zamaraev A V, Kopeina G S, Prokhorova E A, et al. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol, 2017; 27(5): 322-339. doi: 10.1016/j.tcb.2017.01.003
    [21] Ramachandra C J A, Hernandez-Resendiz S, Crespo-Avilan G E, et al. Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine, 2020; 57: 102884. doi: 10.1016/j.ebiom.2020.102884
    [22] Glaviano A, Foo A S C, Lam H Y, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer, 2023; 22(1): 138. doi: 10.1186/s12943-023-01827-6
    [23] Yang R, Li L, Hou Y, et al. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis, 2023; 14(5): 344. doi: 10.1038/s41419-023-05852-7
    [24] Sepa-Kishi D M, Sotoudeh-Nia Y, Iqbal A, et al. Cold acclimation causes fiber type-specific responses in glucose and fat metabolism in rat skeletal muscles. Sci Rep, 2017; 7(1): 15430. doi: 10.1038/s41598-017-15842-3
    [25] Liu P, Yao R, Shi H, et al. Effects of cold-inducible RNA-binding Protein (CIRP) on liver glycolysis during acute cold exposure in C57BL/6 mice. Int J Mol Sci, 2019; 20(6): 1470. doi: 10.3390/ijms20061470
    [26] Xu B, Lang L M, Li S Z, et al. Cortisol excess-mediated mitochondrial damage induced hippocampal neuronal apoptosis in mice following cold exposure. Cells, 2019; 8(6): 612. doi: 10.3390/cells8060612
    [27] Kloetgen A, Duggimpudi S, Schuschel K, et al. YBX1 indirectly targets heterochromatin-repressed inflammatory response-related apoptosis genes through regulating CBX5 mRNA. Int J Mol Sci, 2020; 21(12): 4453. doi: 10.3390/ijms21124453
    [28] Su H, Fan G, Huang J, et al. YBX1 regulated by Runx3-miR-148a-3p axis facilitates non-small-cell lung cancer progression. Cell Signal, 2021; 85: 110049. doi: 10.1016/j.cellsig.2021.110049
    [29] David J J, Subramanian S V, Zhang A, et al. Y-box binding protein-1 implicated in translational control of fetal myocardial gene expression after cardiac transplant. Experimental Biology & Medicine, 2012; 237(5): 593-607. doi: 10.1258/ebm.2012.011137
    [30] Ma L, Singh J, Schekman R. Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes. Elife, 2023; 12: e85878. doi: 10.7554/eLife.85878
    [31] Kishikawa T, Otsuka M, Yoshikawa T, et al. Satellite RNAs promote pancreatic oncogenic processes via the dysfunction of YBX1. Nat Commun, 2016; 7: 13006. doi: 10.1038/ncomms13006
    [32] Feng M, Xie X, Han G, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood, 2021; 138(1): 71-85. doi: 10.1182/blood.2020009676
    [33] Chen J, Liu Z, Zhang H, et al. YBX1 promotes MSC osteogenic differentiation by activating the PI3K/AKT pathway. Curr Stem Cell Res Ther, 2023; 18(4): 513-521. doi: 10.2174/1574888X17666220805143833
    [34] Tuerxun T, Li X, Lou F, et al. YBX1 protects against apoptosis induced by oxygen-glucose deprivation/reoxygenation in PC12 cells via activation of the AKT/GSK3β pathway. Folia Biol (Praha), 2021; 67(4): 150-157. doi: 10.14712/fb2021067040150
    [35] Su W, Wang L, Zhao H, et al. LINC00857 interacting with YBX1 to regulate apoptosis and autophagy via MET and phosphor-AMPKa signaling. Mol Ther Nucleic Acids, 2020; 22: 1164-1175. doi: 10.1016/j.omtn.2020.10.025
    [36] Wang J, Hu K, Cai X, et al. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B, 2022; 12(1): 18-32. doi: 10.1016/j.apsb.2021.07.023
    [37] Liu C, Chen K, Wang H, et al. Gastrin attenuates renal ischemia/ reperfusion injury by a PI3K/Akt/Bad-mediated anti-apoptosis signaling. Front Pharmacol, 2020; 11: 540479. doi: 10.3389/fphar.2020.540479
    [38] Feng C, Wan H, Zhang Y, et al. Neuroprotective effect of danhong injection on cerebral ischemia-reperfusion injury in rats by activation of the PI3K-Akt pathway. Front Pharmacol, 2020; 11: 298. doi: 10.3389/fphar.2020.00298
    [39] Li Y, Xia J, Jiang N, et al. Corin protects H(2)O(2)-induced apoptosis through PI3K/AKT and NF-κB pathway in cardiomyocytes. Biomed Pharmacother, 2018; 97: 594-599. doi: 10.1016/j.biopha.2017.10.090
    [40] Chen R, Chen T, Wang T, et al. Tongmai Yangxin pill reduces myocardial no-reflow by regulating apoptosis and activating PI3K/Akt/ eNOS pathway. J Ethnopharmacol, 2020; 261: 113069. doi: 10.1016/j.jep.2020.113069
  • fzm-4-1-51_ESM.pdf
  • 加载中
图(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  97
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-22
  • 录用日期:  2024-01-22
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回