留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sugars on dehydrated phospholipid bilayer: A mini review on its protective mechanisms

Qing Zuo Cai Gao

Qing Zuo, Cai Gao. Sugars on dehydrated phospholipid bilayer: A mini review on its protective mechanisms[J]. Frigid Zone Medicine, 2025, 5(2): 108-112. doi: 10.1515/fzm-2025-0011
Citation: Qing Zuo, Cai Gao. Sugars on dehydrated phospholipid bilayer: A mini review on its protective mechanisms[J]. Frigid Zone Medicine, 2025, 5(2): 108-112. doi: 10.1515/fzm-2025-0011

Sugars on dehydrated phospholipid bilayer: A mini review on its protective mechanisms

doi: 10.1515/fzm-2025-0011
Funds: 

the National Natural Science Foundation of China, China 52376052

the Anhui Provincial Natural Science Foundation, China 2308085ME174

More Information
  • Figure  1.  Cartoon illustration depicting the hypotheses of the protection mechanism by which sugar molecules protect dehydrated cell membranes

    (A) water replacement hypothesis, (B) hydration force hypothesis, (C) headgroup bridging hypothesis, and (D) vitrification hypothesis.

  • [1] Crowe J H, Hoekstra F A, Crowe L M. Anhydrobiosis. Annu Rev Physiol, 1992; 54(1): 579-599. doi: 10.1146/annurev.ph.54.030192.003051
    [2] Golovina E A, Golovin A V, Hoekstra F A, et al. Water replacement hypothesis in atomic detail-factors determining the structure of dehydrated bilayer stacks. Biophys J, 2009; 97(2): 490-499. doi: 10.1016/j.bpj.2009.05.007
    [3] Crowe J H, Crowe L M, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 1984; 223(4637): 701-703. doi: 10.1126/science.223.4637.701
    [4] Lee C, Das Gupta S, Mattai J, et al. Characterization of the L. lambda. phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction. Biochemistry, 1989; 28(12): 5000-5009. doi: 10.1021/bi00438a015
    [5] Tsvetkova N M, Phillips B L, Crowe L M, et al. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies. Biophys J, 1998; 75(6): 2947-2955. doi: 10.1016/S0006-3495(98)77736-7
    [6] Lambruschini C, Relini A, Ridi A, et al. Trehalose interacts with phospholipid polar heads in Langmuir monolayers. Langmuir, 2000; 16(12): 5467-5470. doi: 10.1021/la991641e
    [7] Golovina E A, Golovin A, Hoekstra F A, et al. Water replacement hypothesis in atomic details: efect of trehalose on the structure of single dehydrated POPC bilayers. Langmuir, 2010; 26(13): 11118-11126. doi: 10.1021/la100891x
    [8] Liu J, Chen C, Li W. The influence of water and trehalose content on the stabilization of POPC membrane upon rapid heating studied by molecular simulations. Fluid Phase Equilib, 2018; 474: 100-109. doi: 10.1016/j.fluid.2018.07.006
    [9] Rand R P, Parsegian V A. Hydration forces between phospholipid bilayers. Biochim Biophys Acta Rev Biomembr, 1989; 988(3): 351-376. doi: 10.1016/0304-4157(89)90010-5
    [10] Koster KL, Maddocks K J, Bryant G. Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour. Eur Biophys J, 2003; 32(2): 96-105. doi: 10.1007/s00249-003-0277-z
    [11] Kent B, Hunt T, Darwish T A, et al. Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective mechanisms. J R Soc Interface, 2014; 11(95): 20140069. doi: 10.1098/rsif.2014.0069
    [12] Kent B, Hauss T, Deme B, et al. Direct comparison of disaccharide interaction with lipid membranes at reduced hydrations. Langmuir, 2015; 31(33): 9134-9141. doi: 10.1021/acs.langmuir.5b02127
    [13] Andersen H D, Wang C, Arleth L, et al. Reconciliation of opposing views on membrane-sugar interactions. Proc Natl Acad Sci U S A, 2011; 108(5): 1874-1878. doi: 10.1073/pnas.1012516108
    [14] Stachura S S, Malajczuk C J, Mancera R L. Does sucrose change its mechanism of stabilization of lipid bilayers during desiccation? Influences of hydration and concentration. Langmuir, 2019; 35(47): 15389-15400. doi: 10.1021/acs.langmuir.9b03086
    [15] Cao Y, Gao C, Yang L, et al. Molecular simulation on the interaction between trehalose and asymmetric lipid bilayer mimicking the membrane of human red blood cells. Cryobiology, 2024; 115: 104898. doi: 10.1016/j.cryobiol.2024.104898
    [16] Pereira C S, Hunenberger P H. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B, 2006; 110(31): 15572-15581. doi: 10.1021/jp060789l
    [17] Pereira C S, Lins R D, Chandrasekhar I, et al. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J, 2004; 86(4): 2273-2285. doi: 10.1016/S0006-3495(04)74285-X
    [18] Sun W Q, Leopold A C, Crowe L M, et al. Stability of dry liposomes in sugar glasses. Biophys J, 1996; 70(4): 1769-1776. doi: 10.1016/S0006-3495(96)79740-0
    [19] Koster K L, Lei Y P, Anderson M, et al. Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys J, 2000; 78(4): 1932-1946. doi: 10.1016/S0006-3495(00)76741-5
    [20] Orlikowska-rzeznik H, Krok E, Domanska M, et al. Dehydration of lipid membranes drives redistribution of cholesterol between lateral domains. J Phys Chem Lett, 2024; 15(16): 4515-4522. doi: 10.1021/acs.jpclett.4c00332
    [21] Maiti A, Daschakraborty S. Unraveling the molecular mechanisms of trehalose-mediated protection and stabilization of Escherichia coli lipid membrane during desiccation. J Phys Chem B, 2023; 127(20): 44964507. doi: 10.1021/acs.jpcb.3c01730
  • 加载中
图(1)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-16
  • 录用日期:  2025-01-23
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回