留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Clinical study of a new nutritional index for predicting long-term prognosis in patients with coronary atherosclerotic heart disease following percutaneous coronary intervention

Xinqiu Chu Yuewen Yuan Jiya Chen Yanwei Yu Yang Li

Xinqiu Chu, Yuewen Yuan, Jiya Chen, Yanwei Yu, Yang Li. Clinical study of a new nutritional index for predicting long-term prognosis in patients with coronary atherosclerotic heart disease following percutaneous coronary intervention[J]. Frigid Zone Medicine, 2024, 4(3): 152-159. doi: 10.1515/fzm-2024-0016
Citation: Xinqiu Chu, Yuewen Yuan, Jiya Chen, Yanwei Yu, Yang Li. Clinical study of a new nutritional index for predicting long-term prognosis in patients with coronary atherosclerotic heart disease following percutaneous coronary intervention[J]. Frigid Zone Medicine, 2024, 4(3): 152-159. doi: 10.1515/fzm-2024-0016

Clinical study of a new nutritional index for predicting long-term prognosis in patients with coronary atherosclerotic heart disease following percutaneous coronary intervention

doi: 10.1515/fzm-2024-0016
Funds: 

The outstanding young teachers basic research support program of Heilongjiang Provincial Department of Education YQJH2023050

More Information
  • Figure  1.  Receiver operating characteristic (ROC) curve of the new nutritional index

    Figure  2.  Kaplan–Meier and cumulative hazard curves.

    (A) The Kaplan–Meier curve displays survival time (in months) on the horizontal axis and the cumulative survival rate on the vertical axis. (B) The cumulative risk curve shows time to event (in months) on the horizontal axis and the cumulative incidence of all-cause mortality and major adverse cardiovascular and cerebrovascular events (MACCE) on the vertical axis. Log-rank analysis indicates a significant difference (P = 0.001).

    Table  1.   Comparison of general characteristics between the low- and high-index groups

    Characteristics Total (N = 608) Low-index group (N = 217) High-index group (N = 391) P-value
    Age, years 59.50 (52.25, 66.00) 61.00 (55.00, 69.00) 58.00 (52.00, 65.00) < 0.001
    Sex
      Male 406 (66.8) 147 (67.7) 259 (66.2) 0.706
      Female 202 (33.2) 70 (32.3) 132 (33.8) 0.294
    Smokingx
      Yes 235 (38.7) 88 (40.6) 147 (37.6) 0.473
      No 373 (61.3) 129 (59.4) 244 (62.4) 0.527
    Other comorbiditiesx
      Hypertension 343 (56.4) 117 (53.9) 226 (57.8) 0.355
      Diabetes mellitus 158 (26.0) 59 (27.2) 99 (25.3) 0.615
      Heart failure 60 (9.9) 43 (19.8) 17 (4.3) < 0.001
      Stroke 117 (19.2) 45 (20.7) 72 (18.4) 0.486
      Myocardial infarction 45 (7.4) 17 (7.8) 28 (7.2) 0.761
    Drug usex
      ACEI/ARB 221 (36.3) 88 (40.6) 133 (34.0) 0.108
      Beta receptor antagonist 336 (55.3) 128 (59.0) 208 (53.2) 0.169
      CCB 203 (33.4) 59 (27.2) 144 (36.8) 0.016
    Values are presented as number (%), unless otherwise stated; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor antagonist; CCB, calcium channel blocker.
    下载: 导出CSV

    Table  2.   Comparison of routine laboratory indices and left ventricular ejection fraction (LVEF) between the low- and high-index groups

    Characteristics Total (N = 608) Low-index group (N = 217) High-index group (N = 391) P-value
    Laboratory parameters
      Triglycerides 1.60 (1.21, 2.30) 1.51 (1.18, 2.03) 1.67 (1.25, 2.50) 0.004
      Total cholesterol 4.51 (3.81, 5.31) 4.50 (3.86, 5.17) 4.53 (3.80, 5.36) 0.320
      LDL 2.72 (2.16, 3.30) 2.75 (2.18, 3.28) 2.72 (2.16, 3.30) 0.728
      HDL 1.07 (0.94, 1.26) 1.04 (0.92, 1.22) 1.09 (0.95, 1.26) 0.058
      Trioxypurine 343.45 (288.75, 404.75) 348.20 (289.30, 406.60) 341.60 (288.60, 403.00) 0.726
      GFR 91.72 (79.15, 105.93) 92.23 (75.22, 108.01) 91.27 (80.19, 105.48) 0.790
      Serum albumin 43.78 ± 3.42 42.24 ± 3.59 44.63 ± 3.00 < 0.001
      Neutrophil count 4.07 (3.21, 5.18) 5.34 (4.28, 6.44) 3.57 (2.93, 4.36) < 0.001
      Lymphocyte count 1.95 (1.55, 2.40) 1.51 (1.18, 1.85) 2.19 (1.79, 2.59) < 0.001
    Healthy nutritional status
      BMI 25.35 (23.18, 27.46) 25.18 (22.55, 27.55) 25.35 (23.44, 27.43) 0.351
    Imageological examination
      LVEF, % 59.00 (57.00, 60.00) 58.00 (56.00, 60.00) 59.00 (58.00, 60.00) < 0.001
    LVEF, left ventricular ejection fraction; LDL, low-density lipoprotein; HDL, high-density lipoprotein; GFR, glomerular filtration rate; BMI, body mass index.
    下载: 导出CSV

    Table  3.   Cox proportional hazards regression analysis for all-cause mortality and MACCE

    Variables Single-factor analysis Multiple-factor analysis
    HR 95% CI P-value HR 95% CI P-value
    Age 1.509 1.026-1.094 < 0.001 1.038 1.003-1.074 0.033
    Hypertension 0.512 0.269-0.976 0.042 0.662 0.326-1.345 0.254
    Heart failure 2.375 1.144-4.930 0.020 1.092 0.405-2.942 0.862
    Myocardial infarction 0.265 0.131-0.535 < 0.001 0.415 0.179-0.961 0.040
    ACEI/ARB 0.364 0.201-0.661 0.001 0.531 0.275-1.026 0.059
    GFR 0.974 0.960-0.988 < 0.001 0.988 0.973-1.002 0.091
    LVEF 0.932 0.894-0.971 0.001 0.977 0.922-1.036 0.433
    Low-index group 2.584 1.430-4.670 0.002 2.179 1.163-4.080 0.015
    MACCE, major unconscionable cerebrovascular events; HR, hazard ratio; CI, confidence interval; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor antagonist; GFR, glomerular filtration rate; LVEF, left ventricular ejection fraction.
    下载: 导出CSV
  • [1] Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res, 2015; 46 (5): 328-338. doi: 10.1016/j.arcmed.2015.06.006
    [2] Liu T D, Zheng Y Y, Tang J N, et al. Prognostic nutritional index as a novel predictor of Long-Term prognosis in patients with coronary artery disease after percutaneous coronary intervention. Clin Appl Thromb Hemost, 2022; 28: 1-8
    [3] Wada H, Dohi T, Miyauchi K, et al. Relationship between the prognostic nutritional index and long-term clinical outcomes in patients with stable coronary artery disease. J Cardiol, 2018; 72 (2): 155-161. doi: 10.1016/j.jjcc.2018.01.012
    [4] Fan Y, He L, Zhou Y, et al. Predictive value of geriatric nutritional risk index in patients with coronary artery disease: a meta-analysis. Front Nutr, 2021; 8: 736884. doi: 10.3389/fnut.2021.736884
    [5] Chen L, Huang Z, Lu J, et al. Impact of the malnutrition on mortality in elderly patients undergoing percutaneous coronary intervention. Clin Interv Aging, 2021; 16: 1347-1356. doi: 10.2147/CIA.S308569
    [6] Wada H, Dohi T, Miyauchi K, et al. Prognostic impact of the geriatric nutritional risk index on long-term outcomes in patients who underwent percutaneous coronary intervention. Am J Cardiol, 2017; 119 (11): 1740-1745. doi: 10.1016/j.amjcard.2017.02.051
    [7] Liu J, Huang Z, Huang H, et al. Malnutrition in patients with coronary artery disease: prevalence and mortality in a 46, 485 Chinese cohort study. Nutr Metab Cardiovasc Dis, 2022; 32 (5): 1186-1194. doi: 10.1016/j.numecd.2021.12.023
    [8] Arero G, Arero A G, Mohammed S H, et al. Prognostic potential of the controlling nutritional status (CONUT) score in predicting all-cause mortality and major adverse cardiovascular events in patients with coronary artery disease: a Meta-Analysis. Front Nutr, 2022; 9: 850641. doi: 10.3389/fnut.2022.850641
    [9] DoiS, Iwata H, Wada H, et al. A novel and simply calculated nutritional index serves as a useful prognostic indicator in patients with coronary artery disease. International Journal of Cardiology, 2018; 262: 92-98. doi: 10.1016/j.ijcard.2018.02.039
    [10] Maruyama S, Ebisawa S, Miura T, et al. Impact of nutritional index on long-term outcomes of elderly patients with coronary artery disease: sub-analysis of the SHINANO 5 year registry. Heart Vessels, 2021; 36 (1): 7-13. doi: 10.1007/s00380-020-01659-0
    [11] Kalyoncuoglu M, Katkat F, Biter H I, et al. Predicting one-year deaths and major adverse vascular events with the controlling nutritional status score in elderly patients with non-ST-elevated myocardial infarction undergoing percutaneous coronary Intervention. J Clin Med, 2021; 10 (11): 2247. doi: 10.3390/jcm10112247
    [12] Raposeiras Roubin S, Abu Assi E, Cespon Fernandez M, et al. Prevalence and prognostic significance of malnutrition in patients with acute coronary syndrome. J Am Coll Cardiol, 2020; 76 (7): 828-840. doi: 10.1016/j.jacc.2020.06.058
    [13] Dentali F, Nigro O, Squizzato A, et al. Impact of neutrophils to lymphocytes ratio on major clinical outcomes in patients with acute coronary syndromes: A systematic review and meta-analysis of the literature. International Journal of Cardiology, 2018; 266: 31-37. doi: 10.1016/j.ijcard.2018.02.116
    [14] Wada H, Dohi T, Miyauchi K, et al. Pre-procedural neutrophil-tolymphocyte ratio and long-term cardiac outcomes after percutaneous coronary intervention for stable coronary artery disease. Atherosclerosis, 2017; 265: 35-40. doi: 10.1016/j.atherosclerosis.2017.08.007
    [15] Ma Y C, Zuo L, Chen J H, et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J Am Soc Nephrol, 2006; 17 (10): 2937-2944. doi: 10.1681/ASN.2006040368
    [16] Nahm F S. Receiver operating characteristic curve: overview and practical use for clinicians. Korean J Anesthesiol, 2022; 75(1): 25-36. doi: 10.4097/kja.21209
    [17] Malekmohammad K, Bezsonov E E, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms. Front Cardiovasc Med. 2021; 8: 707529. doi: 10.3389/fcvm.2021.707529
    [18] Xie Y, Feng X, Gao Y, Zhan X, et al. Association of albumin to nonhigh-density lipoprotein cholesterol ratio with mortality in peritoneal dialysis patients. Ren Fail. 2024; 46(1): 2299601. doi: 10.1080/0886022X.2023.2299601
    [19] Roche M, Rondeau P, Singh N R, et al. The antioxidant properties of serum albumin. FEBS Lett, 2008; 582 (13): 1783-1787. doi: 10.1016/j.febslet.2008.04.057
    [20] Lapenna D, Ciofani G, Ucchino S, et al. Serum albumin and biomolecular oxidative damage of human atherosclerotic plaques. Clin Biochem, 2010; 43 (18): 1458-1460. doi: 10.1016/j.clinbiochem.2010.08.025
    [21] Artigas A, Wernerman J, Arroyo V, et al. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J Crit Care, 2016; 33: 62-70. doi: 10.1016/j.jcrc.2015.12.019
    [22] Lin X, Ke F, Chen M. Association of albumin levels with the risk of intracranial atherosclerosis. BMC Neurol, 2023; 23 (1): 198. doi: 10.1186/s12883-023-03234-2
    [23] Liao L Z, Zhang S Z, Li W D, et al. Serum albumin and atrial fibrillation: insights from epidemiological and mendelian randomization studies. Eur J Epidemiol, 2020; 35 (2): 113-122. doi: 10.1007/s10654-019-00583-6
    [24] Jin X, Xiong S, Ju S Y, et al. Serum 25-Hydroxyvitamin D, albumin, and mortality among chinese older adults: a population-based longitudinal study. J Clin Endocrinol Metab, 2020; 105(8): 349.
    [25] Kalyoncuoglu M, Durmus G. Relationship between C-reactive protein-to-albumin ratio and the extent of coronary artery disease in patients with non-ST-elevated myocardial infarction. Coron Artery Dis, 2020; 31(2): 130-136. doi: 10.1097/MCA.0000000000000768
    [26] Kétlyn de Lima, Caryna Eurich Mazur, Mariana Abe Vicente Cavagnari, et al. Omega-3 supplementation effects on cardiovascular risk and inflammatory profile in chronic kidney disease patients in hemodialysis treatment: an intervention study. Clin Nutr ESPEN, 2023; 58: 144-151 doi: 10.1016/j.clnesp.2023.09.914
    [27] Sproston N R, Ashworth J J. Role of C-Reactive protein at sites of inflammation and infection. Front Immunol, 2018; 9: 754. doi: 10.3389/fimmu.2018.00754
    [28] Gao Y, Wang M, Wang R, et al. The predictive value of the hs-CRP/HDL-C ratio, an inflammation-lipid composite marker, for cardiovascular disease in middle-aged and elderly people: evidence from a large national cohort study. Lipids Health Dis, 2024; 23(1): 66. doi: 10.1186/s12944-024-02055-7
    [29] Eldrup N, Kragelund C, Steffensen R, et al. Prognosis by C-reactive protein and matrix metalloproteinase-9 levels in stable coronary heart disease during 15 years of follow-up. Nutr Metab Cardiovasc Dis, 2012; 22 (8): 677-683. doi: 10.1016/j.numecd.2010.11.003
    [30] Li X, Liu X-H, Nie S P, et al. Prognostic value of baseline C-reactive protein levels in patients undergoing coronary revascularization. Chinese Med J-Peking, 2010; 123 (13): 1628-1632. doi: 10.3760/cma.j.issn.0366-6999.2010.13.003
    [31] Liu S, Jiang H, Dhuromsingh M, et al. Evaluation of C-reactive protein as predictor of adverse prognosis in acute myocardial infarction after percutaneous coronary intervention: a systematic review and meta-analysis from 18, 715 individuals. Front Cardiovasc Med, 2022; 9: 1013501. doi: 10.3389/fcvm.2022.1013501
    [32] Bian C, Wu Y, Shi Y, et al. Predictive value of the relative lymphocyte count in coronary heart disease. Heart Vessels, 2010; 25 (6): 469-473. doi: 10.1007/s00380-010-0010-7
    [33] Horne B D, Anderson J L, John J M, et al. Which white blood cell subtypes predict increased cardiovascular risk? J Am Coll Cardiol, 2005; 45 (10): 1638-1643. doi: 10.1016/j.jacc.2005.02.054
    [34] Waleria T Fonzar, Francisco A Fonseca, et al. Atherosclerosis severity in patients with familial hypercholesterolemia: The role of T and B lymphocytes. Atheroscler Plus, 2022; 48: 27-36. doi: 10.1016/j.athplu.2022.03.002
    [35] Wada H, Dohi T, Miyauchi K, et al. Prognostic impact of nutritional status assessed by the Controlling Nutritional Status score in patients with stable coronary artery disease undergoing percutaneous coronary intervention. Clin Res Cardiol, 2017; 106 (11): 875-883. doi: 10.1007/s00392-017-1132-z
    [36] Olsen S J, Schirmer H, Bonaa K H, et al. Cardiac rehabilitation after percutaneous coronary intervention: results from a nationwide survey. Eur J Cardiovasc Nurs, 2018; 17 (3): 273-279. doi: 10.1177/1474515117737766
    [37] Cruz Rodriguez J B, Alkhateeb H. Beta-Blockers, calcium channel clockers, and mortality in stable coronary artery disease. Curr Cardiol Rep, 2020; 22(3): 12. doi: 10.1007/s11886-020-1262-1
    [38] Luo L, Li M, Xi Y, et al. C-reactive protein-albumin-lymphocyte index as a feasible nutrition-immunity-inflammation marker of the outcome of all-cause and cardiovascular mortality in elderly. Clin Nutr ESPEN, 2024; 63: 346-353. doi: 10.1016/j.clnesp.2024.06.054
    [39] Lessomo F Y N, Fan Q, Wang Z Q, et al. The relationship between leukocyte to albumin ratio and atrial fibrillation severity. BMC Cardiovasc Disord, 2023; 23(1): 67. doi: 10.1186/s12872-023-03097-y
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  35
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-08
  • 录用日期:  2024-08-28

目录

    /

    返回文章
    返回