2025, 5(2): 81-90.
doi: 10.1515/fzm-2025-0009
Oocyte cryopreservation is an essential procedure in assisted reproductive technologies, aimed at preserving fertility, particularly for women undergoing IVF treatment or at risk of ovarian damage due to radiation, chemotherapy, or surgery. Despite its growing use, the survival and fertilization rates of cryopreserved oocytes remain suboptimal, largely due to cryo-induced oxidative stress. The generation of Reactive Oxygen Species (ROS) during freezing and thawing causes considerable damage to key cellular components, including proteins, lipids, DNA, and mitochondria. This oxidative stress compromises oocyte quality and reduces developmental potential. To address these challenges, the use of additives - especially antioxidants - has shown significant promise in mitigating oxidative damage. Enzymatic antioxidants such as Superoxide Dismutase (SOD) and Catalase (CAT), along with non-enzymatic antioxidants like glutathione, melatonin, and resveratrol, have demonstrated the ability to neutralize ROS and improve oocyte viability and developmental outcomes. Recent studies highlight the potential of Mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to effectively counteract mitochondrial ROS and enhance cellular defense mechanisms during cryopreservation. This review explores the cellular mechanisms of cryodamage, the role of oxidative stress in oocyte cryopreservation, and the potential of various antioxidant strategies to enhance oocyte survival and function. Developing effective antioxidant supplementation approaches may significantly improve the outcomes of cryopreservation in reproductive medicine.
2025, 5(2): 73-80.
doi: 10.1515/fzm-2025-0008
Keywords:
cryopreservation ,
encapsulation ,
hydrogels ,
biomaterials ,
tissue engineering ,
regenerative medicine ,
nanotechnology ,
smart polymers
Cryopreservation is a fundamental technology in biomedical research, regenerative medicine, and tissue engineering, enabling the long-term storage of cells, tissues, and organs. However, its effectiveness is limited by challenges such as intracellular ice formation, cryoprotectant toxicity, and reduced post-thaw viability. This review explores the crucial role of encapsulation in enhancing cryopreservation efficiency, with a focus on recent advances in materials science, bioengineering, and cryobiology. Emerging technologies, such as nanotechnology and stimuli-responsive polymers, are transforming encapsulation strategies. Innovations such as microfluidic systems offer precise control over cooling rates and cryoprotectant distribution, thereby mitigating conventional limitations. The review also addresses current obstacles related to scaling up encapsulation processes and ensuring the long-term biocompatibility and stability of preserved specimens. By synthesizing recent findings, this work provides a comprehensive resource for researchers and clinicians seeking to enhance biopreservation techniques and their applications in contemporary medicine and biotechnology. Finally, the review identifies critical knowledge gaps that must be addressed to improve the efficacy of cryopreservation strategies and advance their clinical translation.