Sort By:
Relevance
Published
Display per page:
10
20
30
50
Computation-aided novel epitope prediction by targeting spike protein's functional dynamics in Omicron
Bin Sun, Yong Zhang, Baofeng Yang
2023, 3(1): 1-4. doi: 10.2478/fzm-2023-0001
Prevention and control measures of the major cold-region diseases (hypertension) in China
Zhenwei Pan, Yong Zhang, Tengfei Pan, Haihai Liang, Baofeng Yang
2021, 1(1): 3-8. doi: 10.2478/fzm-2021-0002
Keywords: hypertension, cold region, prevention, cure
Hypertension is the most common cardiovascular condition in clinical practice and a major risk factor for stroke and cardiovascular events. There are more than 270 million hypertension patients in China, and the prevalence of hypertension in the high-latitude cold areas is significantly higher than in the low-latitude warm areas. The unique epidemiological characteristics and risk factors of hypertension in the cold regions of China urge for establishment of the prevention and control system for targeted and more effective management of the condition.
Inaugural Editorial
Baofeng Yang
2021, 1(1): 1-1. doi: 10.2478/fzm-2021-0001
GDF11 restores the impaired function of EPCs-MA by promoting autophagy: GDF11 ameliorates endothelial progenitor cell aging by promoting autophagy
Donghua Liu, Yang Zhang, Xin Liu, Qihe Huang, Xiaofang Zhang, Rui Yang, Yue Zhao, Penghui Li, Jiayi He, Kexiao Zhang, Zhenwei Pan, Huiwen Liu, Baofeng Yang
2024, 4(4): 212-223. doi: 10.1515/fzm-2024-0021
Keywords: GDF11, endothelial progenitor cells, autophagy lysosome pathway, aging
  Objective   Our study aimed to assess the effects of Growth and differentiation factor 11 (GDF11) on the function of endothelial progenitor cells in middle-age individuals (EPCs-MA) isolated from mouse bone marrow and to explore the mechanistic relationship between GDF11 and age-related ALP impairment.   Methods   Bone marrow-derived EPCs were isolated, culture and GDF11 treatment. In vivo, the mice model of myocardial ischemia (MI) was induced by permanent ligation of the left anterior descending coronary artery (LAD) and mice were randomly divided into MI group and EPCs transplantation group (EPCs-Y, EPCs-MA, EPCs-MA/GDF11). The positive effect of GDF11 treatment of EPCs-MA on MI was verified by echocardiography and the average ratio of fibrotic area to left ventricular (LV) area. In vitro, the effect of GDF11 on ameliorating EPCs aging by promoting autophagy was confirmed by transwell assay, immunofluorescence staining, characterization of EPCs ultrastructure through transmission electron microscope (TEM), lysosome imaging and Western blot.   Result   Our findings demonstrate that GDF11 enhances the migration capacity of EPCs-MA and improves recovery of impaired cardiac function after myocardial infarction (MI) in mice, with EPCs isolated from young mice (EPCs-Y) as controls. Moreover, GDF11 restored functional phenotypes of EPCs-MA to levels akin to EPCs-Y, promoting the expression of CD31, endogenous NO synthase, and the restoration of von Willebrand factor (vWF) and CDH5 expression patterns, as well as the formation of Weibel-Palade bodies—key organelles for storage and secretion in endothelial cells and EPCs. Furthermore, GDF11 significantly enhanced the autophagic clearance capability of EPCs-MA by promoting ALP.   Conclusions   Our results suggest that GDF11 ameliorates cardiac function impairment by restoring the activities of EPCs from aging mice through enhanced ALP. These findings suggest that GDF11 may hold therapeutic potential for improving aging-related conditions associated with declined autophagy.
Small ubiquitin-like modifiers inhibitors lower blood pressure via ERK5/KLF2-dependent upregulation of the eNOS/NO pathway
Nannan Tang, Jiatong Li, Zhuo Wang, Jinlu Zuo, Zifeng Zhang, Di Huang, Yannan Han, Yuqing Chen, Yilin Sun, Xiang Li, Ruxue Mu, Qingxue Ma, Jie Zhang, Jiaying Wu, He Wang, Hongxia Zhao, Xingli Dong, Zhiguo Wang, Yu Liu, Dan Zhao, Baofeng Yang
2024, 4(4): 202-211. doi: 10.1515/fzm-2024-0020
Keywords: hypertension, SUMO inhibitor, ERK5, SUMOylation, KLF2
  Background  Small ubiquitin-like modifiers (SUMO)ylation is a dynamic and reversible post-translational modification playing pivotal roles in the regulation of cancer, diabetes, heart failure, and neurological diseases. However, whether SUMO inhibitors also have anti-hypertension effect remains yet to be explored.  Methods  Blood pressure was monitored in spontaneously hypertensive rats (SHR) after Tannic acid (TA) administration for 4 weeks. The contents of nitric oxide (NO) and endothelin-1 (ET-1) in the serum of SHR were measured. Isolated endothelium-intact mesenteric artery rings were used to study relaxation effect of SUMO inhibitors. ERK5 SUMOylation was determined using coimmunoprecipitation (co-IP) and immunofluorescence (IF). NO levels were analyzed by IF. The expression levels of KLF2 and p-eNOS were semiquantified by Western blot analysis. The transcriptional activity of eNOS promotor was assayed using ChIP-PCR.  Results  Three SUMO inhibitors all reduced the phenylephrine (PE)-induced contraction of mesenteric artery rings in a concentration-dependent manner. Co-IP revealed that ponatinib promoted ERK5 SUMOylation, which was nulled following pretreatment with the SUMO inhibitors. IF displayed that TA increased ERK5 accumulation and its co-localization with SUMO-1 in the nucleus. ChIP-PCR unveiled TA-induced enhancement of KLF2-dependent eNOS promoter activity and upregulation of eNOS/NO expression in HUVECs. In vivo, TA significantly lowered the blood pressure and improved the vascular reactivity by activating the KLF2/eNOS/NO pathway. Additionally, the level of NO was elevated along with decreased ET-1 levels in the serum of SHR.  Conclusions  SUMO inhibitors inhibit ERK5 SUMOylation to promote KLF2-eNOS/NO signaling, indicating their therapeutic potential for the treatment of hypertension.
Hydroxychloroquine induces long QT syndrome by blocking hERG channel
Xin Zhao, Lihua Sun, Chao Chen, Jieru Xin, Yan Zhang, Yunlong Bai, Zhenwei Pan, Yong Zhang, Baoxin Li, Yanjie Lv, Baofeng Yang
2023, 3(2): 105-113. doi: 10.2478/fzm-2023-0014
Keywords: COVID-19, hydroxychloroquine, LQT, hERG, Hsp90
  Objective  In March 2022, more than 600 million cases of Corona Virus Disease 2019 (COVID-19) and about 6 million deaths have been reported worldwide. Unfortunately, while effective antiviral therapy has not yet been available, chloroquine (CQ)/hydroxychloroquine (HCQ) has been considered an option for the treatment of COVID-19. While many studies have demonstrated the potential of HCQ to decrease viral load and rescue patients' lives, controversial results have also been reported. One concern associated with HCQ in its clinical application to COVID-19 patients is the potential of causing long QT interval (LQT), an electrophysiological substrate for the induction of lethal ventricular tachyarrhythmias. Yet, the mechanisms for this cardiotoxicity of HCQ remained incompletely understood.  Materials and methods  Adult New Zealand white rabbits were used for investigating the effects of HCQ on cardiac electrophysiology and expression of ion channel genes. HEK-293T cells with sustained overexpression of human-ether-a-go-go-related gene (hERG) K+ channels were used for whole-cell patch-clamp recordings of hERG K+ channel current (IhERG). Quantitative RT-PCR analysis and Western blot analysis were employed to determine the expression of various genes at mRNA and protein levels, respectively.  Results  electrocardiogram (ECG) recordings revealed that HCQ prolonged QT and RR intervals and slowed heart rate in rabbits. Whole-cell patch-clamp results showed that HCQ inhibited the tail current of hERG channels and slowed the reactivation process from inactivation state. HCQ suppressed the expression of hERG and hindered the formation of the heat shock protein 90 (Hsp90)/hERG complex. Moreover, the expression levels of connexin 43 (CX43) and Kir2.1, the critical molecular/ionic determinants of cardiac conduction thereby ventricular arrythmias, were decreased by HCQ, while those of Cav1.2, the main Ca2+ handling proteins, remained unchanged and SERCA2a was increased.  Conclusion  HCQ could induce LQT but did not induce arrhythmias, and whether it is suitable for the treatment of COVID-19 requires more rigorous investigations and validations in the future.
Altered expression profile of long non-coding RNAs during heart aging in mice
Xiuxiu Wang, Bingjie Hua, Meixi Yu, Shenzhen Liu, Wenya Ma, Fengzhi Ding, Qi Huang, Lai Zhang, Chongwei Bi, Ye Yuan, Mengyu Jin, Tianyi Liu, Ying Yu, Benzhi Cai, Baofeng Yang
2022, 2(2): 109-118. doi: 10.2478/fzm-2022-0015
Keywords: heart aging, long noncoding RNAs, gene microarray, expression profile, cold stress, cardiovascular diseases
  Objective  Long noncoding RNAs (lncRNAs) play an important role in regulating the occurrence and development of cardiovascular diseases. However, the role of lncRNAs in heart aging remains poorly understood. The objective of this study was to identify differentially expressed lncRNAs in the heart of aging mice and elucidate the relevant regulatory pathways of cardiac aging.  Materials and methods  Echocardiography was used to detect the cardiac function of 18-months (aged) and 3-months (young) old C57BL/6 mice. Microarray analysis was performed to unravel the expression profiles of lncRNAs and mRNAs, and qRT-PCR to verify the highly dysregulated lncRNAs.  Results  Our results demonstrated that the heart function in aged mice was impaired relative to young ones. Microarray results showed that 155 lncRNAs were upregulated and 37 were downregulated, and 170 mRNAs were significantly upregulated and 44 were remarkably downregulated in aging hearts. Gene ontology analysis indicated that differentially expressed genes are mainly related to immune function, cell proliferation, copper ion response, and cellular cation homeostasis. KEGG pathway analysis showed that the differentially expressed mRNAs are related to cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, and the NF-kappa B signaling pathway.  Conclusion  These results imply that the differentially expressed lncRNAs may regulate the development of heart aging. This study provides a new perspective on the potential effects and mechanisms of lncRNAs in heart aging.