Citation: | Rennan Feng, Qianqi Hong, Jingjing Cao, Jian Li, Lanxin Deng, Jing Wang, Yang Zhao, Cheng Wang. The link between dietary nutrients intake and cardiovascular diseases in cold regions[J]. Frigid Zone Medicine, 2024, 4(1): 1-11. doi: 10.2478/fzm-2024-0001 |
[1] |
Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. BES, 2022; 35 (7): 573-603.
|
[2] |
Report on Cardiovascular Health and Diseases in China 2022: Key points interpretation. Chin J Cardiovasc Sci, 2023; 28 (4): 297-312. (In Chinese)
|
[3] |
Zhai F Y, Du S F, Wang Z H, et al. Dynamics of the Chinese diet and the role of urbanicity, 1991-2011. Obes Rev, 2014; 15 Suppl 1 (1): 16-26. doi: 10.1111/obr.12124
|
[4] |
Ng S W, Norton E C, Popkin B M. Why have physical activity levels declined among Chinese adults? Findings from the 1991-2006 China health and nutrition surveys. Soc Sci Med, 2009; 68 (7): 1305-1314. doi: 10.1016/j.socscimed.2009.01.035
|
[5] |
Mi Y J, Zhang B, Wang H J, et al. Prevalence and secular trends in obesity among Chinese adults, 1991-2011. Am J Prev Med, 2015; 49 (5): 661-669. doi: 10.1016/j.amepre.2015.05.005
|
[6] |
Du S, Batis C, Wang H, et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr, 2014; 99 (2): 334-343. doi: 10.3945/ajcn.113.059121
|
[7] |
Wang C, Zhang Z, Zhou M, et al. Nonlinear relationship between extreme temperature and mortality in different temperature zones: A systematic study of 122 communities across the mainland of China. Sci Total Environ, 2017; 586: 96-106. doi: 10.1016/j.scitotenv.2017.01.218
|
[8] |
Wang M, Huang Y, Song Y, et al. Study on environmental and lifestyle factors for the north-south differential of cardiovascular disease in China. Front Public Health, 2021; 9: 615152. doi: 10.3389/fpubh.2021.615152
|
[9] |
Anderson C A, Appel L J, Okuda N, et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc, 2010; 110 (5): 736-745. doi: 10.1016/j.jada.2010.02.007
|
[10] |
Wu Z, Yao C, Zhao D, et al. Multiprovincial monitoring of the trends and determinants of cardiovascular diseases (Sino-MONCA project)--IIl. Association between risk factor levels and cardiovascular disease. Lung and Blood Vessel Medical Center, 1998 (2): 5-8. (In Chinese)
|
[11] |
PRC National Blood Pressure Survey Cooperative Group. Prevalence and development trends of hypertension in China. Chinese Journal of Hypertension, 1995 (S1): 9-15. (In Chinese)
|
[12] |
Guo P, Zhu H, Pan H, et al. Dose-response relationships between dairy intake and chronic metabolic diseases in a Chinese population. J Diabetes, 2019; 11 (11): 846-856. doi: 10.1111/1753-0407.12921
|
[13] |
Guzik T J, Touyz R M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 2017; 70 (4): 660-667. doi: 10.1161/HYPERTENSIONAHA.117.07802
|
[14] |
Loperena R, Harrison D G. Oxidative stress and hypertensive diseases. Med Clin North Am, 2017; 101 (1): 169-193. doi: 10.1016/j.mcna.2016.08.004
|
[15] |
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993; 362 (6423): 801-809. doi: 10.1038/362801a0
|
[16] |
Fuster V, Badimon L, Badimon J J, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med, 1992; 326 (5): 310-318. doi: 10.1056/NEJM199201303260506
|
[17] |
Achan V, Tran C T, Arrigoni F, et al. all-trans-Retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res, 2002; 90 (7): 764-769. doi: 10.1161/01.RES.0000014450.40853.2B
|
[18] |
Jialal I, Norkus E P, Cristol L, et al. beta-Carotene inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta, 1991; 1086 (1): 134-138. doi: 10.1016/0005-2760(91)90164-D
|
[19] |
Reifen R. Vitamin A as an anti-inflammatory agent. Proc Nutr Soc, 2002; 61 (3): 397-400. doi: 10.1079/PNS2002172
|
[20] |
Wiedermann U, Chen X J, Enerbäck L, et al. Vitamin A deficiency increases inflammatory responses. Scand J Immunol, 1996; 44 (6): 578-584. doi: 10.1046/j.1365-3083.1996.d01-351.x
|
[21] |
Sahebkar A. Effect of niacin on endothelial function: a systematic review and meta-analysis of randomized controlled trials. Vasc Med, 2014; 19 (1): 54-66. doi: 10.1177/1358863X13515766
|
[22] |
Wu B J, Yan L, Charlton F, et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol, 2010; 30 (5): 968-975. doi: 10.1161/ATVBAHA.109.201129
|
[23] |
Zeman M, Vecka M, Perlík F, et al. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm, 2016; 66 (4): 449-469. doi: 10.1515/acph-2016-0043
|
[24] |
Thoenes M, Oguchi A, Nagamia S, et al. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int J Clin Pract, 2007; 61 (11): 1942-1948. doi: 10.1111/j.1742-1241.2007.01597.x
|
[25] |
Kuvin J T, Dave D M, Sliney K A, et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am J Cardiol, 2006; 98 (6): 743-745. doi: 10.1016/j.amjcard.2006.04.011
|
[26] |
Tavintharan S, Kashyap M L. The benefits of niacin in atherosclerosis. Curr Atheroscler Rep, 2001; 3 (1): 74-82. doi: 10.1007/s11883-001-0014-y
|
[27] |
Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol, 2017; 956: 61-84. doi: 10.1007/5584_2016_147
|
[28] |
Yadav K, Pandav C S. National iodine deficiency disorders control programme: Current status & future strategy. Indian J Med Res, 2018; 148 (5): 503-510. doi: 10.4103/ijmr.IJMR_1717_18
|
[29] |
Liu J, Liu L, Jia Q, et al. Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biol Trace Elem Res, 2019; 192 (2): 136-144. doi: 10.1007/s12011-019-01668-9
|
[30] |
Bindels R J, Van Den Broek L A, Hillebrand S J, et al. A high phosphate diet lowers blood pressure in spontaneously hypertensive rats. Hypertension, 1987; 9 (1): 96-102. doi: 10.1161/01.HYP.9.1.96
|
[31] |
Felsenfeld A J, Rodriguez M. Phosphorus, regulation of plasma calcium, and secondary hyperparathyroidism: a hypothesis to integrate a historical and modern perspective. J Am Soc Nephrol, 1999; 10 (4): 878-890. doi: 10.1681/ASN.V104878
|
[32] |
Elliott P, Kesteloot H, Appel L J, et al. Dietary phosphorus and blood pressure: international study of macro- and micro-nutrients and blood pressure. Hypertension, 2008; 51 (3): 669-675. doi: 10.1161/HYPERTENSIONAHA.107.103747
|
[33] |
Resnick L M. The role of dietary calcium in hypertension: a hierarchical overview. Am J Hypertens, 1999; 12 (1 Pt 1): 99-112. doi: 10.1016/S0895-7061(98)00275-1
|
[34] |
Das U N. Nutritional factors in the pathobiology of human essential hypertension. Nutrition, 2001; 17 (4): 337-346. doi: 10.1016/S0899-9007(00)00586-4
|
[35] |
Nawrot T S, Staessen J A, Roels H A, et al. Blood pressure and blood selenium: a cross-sectional and longitudinal population study. Eur Heart J, 2007; 28 (5): 628-633. doi: 10.1093/eurheartj/ehl479
|
[36] |
Hu X F, Eccles K M, Chan H M. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environ Int, 2017; 102: 200-206. doi: 10.1016/j.envint.2017.03.002
|
[37] |
Kim J. Dietary zinc intake is inversely associated with systolic blood pressure in young obese women. Nutr Res Pract, 2013; 7 (5): 380-384. doi: 10.4162/nrp.2013.7.5.380
|
[38] |
Kasai M, Miyazaki T, Takenaka T, et al. Excessive zinc intake increases systemic blood pressure and reduces renal blood flow via kidney angiotensin Ⅱ in rats. Biol Trace Elem Res, 2012; 150 (1-3): 285-290. doi: 10.1007/s12011-012-9472-z
|
[39] |
Bergomi M, Rovesti S, Vinceti M, et al. Zinc and copper status and blood pressure. J Trace Elem Med Biol, 1997; 11 (3): 166-169. doi: 10.1016/S0946-672X(97)80047-8
|
[40] |
Williams C R, Mistry M, Cheriyan A M, et al. Zinc deficiency induces hypertension by promoting renal Na (+) reabsorption. Am J Physiol Renal Physiol, 2019; 316 (4): F646-F653. doi: 10.1152/ajprenal.00487.2018
|
[41] |
Altorf-Van Der Kuil W, Engberink M F, Brink E J, et al. Dietary protein and blood pressure: a systematic review. PLoS One, 2010; 5 (8): e12102. doi: 10.1371/journal.pone.0012102
|
[42] |
Robin S, Maupoil V, Groubatch F, et al. Effect of a methionine-supplemented diet on the blood pressure of Wistar-Kyoto and spontaneously hypertensive rats. Br J Nutr, 2003; 89 (4): 539-548. doi: 10.1079/BJN2002810
|
[43] |
Ditscheid B, Fünfstück R, Busch M, et al. Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study. Eur J Clin Nutr, 2005; 59 (6): 768-775. doi: 10.1038/sj.ejcn.1602138
|
[44] |
Raghavan S A, Dikshit M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res, 2004; 49 (5): 397-414. doi: 10.1016/j.phrs.2003.10.008
|
[45] |
Altorf-Van Der Kuil W, Engberink M F, De Neve M, et al. Dietary amino acids and the risk of hypertension in a Dutch older population: the Rotterdam Study. Am J Clin Nutr, 2013; 97 (2): 403-410. doi: 10.3945/ajcn.112.038737
|
[46] |
Rinschen M, Palygin O, Golosova D, et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun, 2022; 13 (1): 4099. doi: 10.1038/s41467-022-31670-0
|
[47] |
Hou E, Sun N, Zhang F, et al. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension. Cell Rep, 2017; 19 (8): 1631-1639. doi: 10.1016/j.celrep.2017.04.071
|
fzm-4-1-1_ESM.pdf |