Volume 4 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Rennan Feng, Qianqi Hong, Jingjing Cao, Jian Li, Lanxin Deng, Jing Wang, Yang Zhao, Cheng Wang. The link between dietary nutrients intake and cardiovascular diseases in cold regions[J]. Frigid Zone Medicine, 2024, 4(1): 1-11. doi: 10.2478/fzm-2024-0001
Citation: Rennan Feng, Qianqi Hong, Jingjing Cao, Jian Li, Lanxin Deng, Jing Wang, Yang Zhao, Cheng Wang. The link between dietary nutrients intake and cardiovascular diseases in cold regions[J]. Frigid Zone Medicine, 2024, 4(1): 1-11. doi: 10.2478/fzm-2024-0001

The link between dietary nutrients intake and cardiovascular diseases in cold regions

doi: 10.2478/fzm-2024-0001
Funds:

the National Natural Science Foundation of China 82273613

Heilongjiang Provincial Natural Science Foundation of China LC2016032

More Information
  • Corresponding author: Cheng Wang, E-mail: wangchenghlj@163.com
  • Received Date: 2023-10-28
  • Accepted Date: 2023-12-12
  • Available Online: 2024-01-01
  •   Background  The cold winter weather in northern China influences the dietary habits of its residents, contributing to a heightened risk of cardiovascular disorders, such as hypertension and coronary heart disease. Key factors include low vegetable consumption and high salt and fat intakes. This study aims to investigate the relationships between northern dietary nutrient intake in northern China and cardiovascular disorders during the winter season.  Methods  A food frequency questionnaire tailored to the actual eating habits in northern China was designed. Retrospective data from 955 Chinese adults were collected from November to March between 2014 to 2023. Logistic regression was employed to analyze the relationship between dietary nutrients and cardiovascular diseases, with model performance assessed using receiver operating characteristic (ROC) curves.  Results  Adjusted for gender, age, and body mass index (BMI), an inverse association was observed between vitamin A (OR = 0.706, 95% CI: 0.550, 0.907), nicotinic acid (OR = 0.584, 95% CI: 0.447, 0.762), phosphorus (OR = 0.777, 95% CI: 0.608, 0.994), selenium (OR = 0.719, 95% CI: 0.560, 0.923), zinc (OR = 0.683, 95% CI: 0.531, 0.880), methionine (OR = 0.730, 95% CI: 0.569, 0.936), arginine (OR = 0.753, 95% CI: 0.588, 0.964), lysine (OR = 0.706, 95% CI: 0.550, 0.907), aspartic acid (OR = 0.730, 95% CI: 0.569, 0.936) and hypertension. Additionally, a negative association was found between niacin (OR = 0.752, 95% CI: 0.597, 0.946) and coronary heart disease. Conversely, a positive association was identified between iodine and hypertension (OR = 1.305, 95% CI: 1.020, 1.669) and coronary heart disease (OR = 1.301, 95% CI: 1.037, 1.634).  Conclusion  Our study suggests that maintaining a balanced dietary intake of vitamin A, niacin, phosphorus, selenium, zinc, methionine, arginine, lysine, and aspartic acid can be beneficial in preventing hypertension. Adequate niacin intake is associated with a lower risk of coronary heart disease. However, excessive iodine intake may contribute to hypertension and coronary heart disease.

     

  • loading
  • [1]
    Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. BES, 2022; 35 (7): 573-603.
    [2]
    Report on Cardiovascular Health and Diseases in China 2022: Key points interpretation. Chin J Cardiovasc Sci, 2023; 28 (4): 297-312. (In Chinese)
    [3]
    Zhai F Y, Du S F, Wang Z H, et al. Dynamics of the Chinese diet and the role of urbanicity, 1991-2011. Obes Rev, 2014; 15 Suppl 1 (1): 16-26. doi: 10.1111/obr.12124
    [4]
    Ng S W, Norton E C, Popkin B M. Why have physical activity levels declined among Chinese adults? Findings from the 1991-2006 China health and nutrition surveys. Soc Sci Med, 2009; 68 (7): 1305-1314. doi: 10.1016/j.socscimed.2009.01.035
    [5]
    Mi Y J, Zhang B, Wang H J, et al. Prevalence and secular trends in obesity among Chinese adults, 1991-2011. Am J Prev Med, 2015; 49 (5): 661-669. doi: 10.1016/j.amepre.2015.05.005
    [6]
    Du S, Batis C, Wang H, et al. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am J Clin Nutr, 2014; 99 (2): 334-343. doi: 10.3945/ajcn.113.059121
    [7]
    Wang C, Zhang Z, Zhou M, et al. Nonlinear relationship between extreme temperature and mortality in different temperature zones: A systematic study of 122 communities across the mainland of China. Sci Total Environ, 2017; 586: 96-106. doi: 10.1016/j.scitotenv.2017.01.218
    [8]
    Wang M, Huang Y, Song Y, et al. Study on environmental and lifestyle factors for the north-south differential of cardiovascular disease in China. Front Public Health, 2021; 9: 615152. doi: 10.3389/fpubh.2021.615152
    [9]
    Anderson C A, Appel L J, Okuda N, et al. Dietary sources of sodium in China, Japan, the United Kingdom, and the United States, women and men aged 40 to 59 years: the INTERMAP study. J Am Diet Assoc, 2010; 110 (5): 736-745. doi: 10.1016/j.jada.2010.02.007
    [10]
    Wu Z, Yao C, Zhao D, et al. Multiprovincial monitoring of the trends and determinants of cardiovascular diseases (Sino-MONCA project)--IIl. Association between risk factor levels and cardiovascular disease. Lung and Blood Vessel Medical Center, 1998 (2): 5-8. (In Chinese)
    [11]
    PRC National Blood Pressure Survey Cooperative Group. Prevalence and development trends of hypertension in China. Chinese Journal of Hypertension, 1995 (S1): 9-15. (In Chinese)
    [12]
    Guo P, Zhu H, Pan H, et al. Dose-response relationships between dairy intake and chronic metabolic diseases in a Chinese population. J Diabetes, 2019; 11 (11): 846-856. doi: 10.1111/1753-0407.12921
    [13]
    Guzik T J, Touyz R M. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension, 2017; 70 (4): 660-667. doi: 10.1161/HYPERTENSIONAHA.117.07802
    [14]
    Loperena R, Harrison D G. Oxidative stress and hypertensive diseases. Med Clin North Am, 2017; 101 (1): 169-193. doi: 10.1016/j.mcna.2016.08.004
    [15]
    Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993; 362 (6423): 801-809. doi: 10.1038/362801a0
    [16]
    Fuster V, Badimon L, Badimon J J, et al. The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med, 1992; 326 (5): 310-318. doi: 10.1056/NEJM199201303260506
    [17]
    Achan V, Tran C T, Arrigoni F, et al. all-trans-Retinoic acid increases nitric oxide synthesis by endothelial cells: a role for the induction of dimethylarginine dimethylaminohydrolase. Circ Res, 2002; 90 (7): 764-769. doi: 10.1161/01.RES.0000014450.40853.2B
    [18]
    Jialal I, Norkus E P, Cristol L, et al. beta-Carotene inhibits the oxidative modification of low-density lipoprotein. Biochim Biophys Acta, 1991; 1086 (1): 134-138. doi: 10.1016/0005-2760(91)90164-D
    [19]
    Reifen R. Vitamin A as an anti-inflammatory agent. Proc Nutr Soc, 2002; 61 (3): 397-400. doi: 10.1079/PNS2002172
    [20]
    Wiedermann U, Chen X J, Enerbäck L, et al. Vitamin A deficiency increases inflammatory responses. Scand J Immunol, 1996; 44 (6): 578-584. doi: 10.1046/j.1365-3083.1996.d01-351.x
    [21]
    Sahebkar A. Effect of niacin on endothelial function: a systematic review and meta-analysis of randomized controlled trials. Vasc Med, 2014; 19 (1): 54-66. doi: 10.1177/1358863X13515766
    [22]
    Wu B J, Yan L, Charlton F, et al. Evidence that niacin inhibits acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Arterioscler Thromb Vasc Biol, 2010; 30 (5): 968-975. doi: 10.1161/ATVBAHA.109.201129
    [23]
    Zeman M, Vecka M, Perlík F, et al. Pleiotropic effects of niacin: Current possibilities for its clinical use. Acta Pharm, 2016; 66 (4): 449-469. doi: 10.1515/acph-2016-0043
    [24]
    Thoenes M, Oguchi A, Nagamia S, et al. The effects of extended-release niacin on carotid intimal media thickness, endothelial function and inflammatory markers in patients with the metabolic syndrome. Int J Clin Pract, 2007; 61 (11): 1942-1948. doi: 10.1111/j.1742-1241.2007.01597.x
    [25]
    Kuvin J T, Dave D M, Sliney K A, et al. Effects of extended-release niacin on lipoprotein particle size, distribution, and inflammatory markers in patients with coronary artery disease. Am J Cardiol, 2006; 98 (6): 743-745. doi: 10.1016/j.amjcard.2006.04.011
    [26]
    Tavintharan S, Kashyap M L. The benefits of niacin in atherosclerosis. Curr Atheroscler Rep, 2001; 3 (1): 74-82. doi: 10.1007/s11883-001-0014-y
    [27]
    Rust P, Ekmekcioglu C. Impact of salt intake on the pathogenesis and treatment of hypertension. Adv Exp Med Biol, 2017; 956: 61-84. doi: 10.1007/5584_2016_147
    [28]
    Yadav K, Pandav C S. National iodine deficiency disorders control programme: Current status & future strategy. Indian J Med Res, 2018; 148 (5): 503-510. doi: 10.4103/ijmr.IJMR_1717_18
    [29]
    Liu J, Liu L, Jia Q, et al. Effects of excessive iodine intake on blood glucose, blood pressure, and blood lipids in adults. Biol Trace Elem Res, 2019; 192 (2): 136-144. doi: 10.1007/s12011-019-01668-9
    [30]
    Bindels R J, Van Den Broek L A, Hillebrand S J, et al. A high phosphate diet lowers blood pressure in spontaneously hypertensive rats. Hypertension, 1987; 9 (1): 96-102. doi: 10.1161/01.HYP.9.1.96
    [31]
    Felsenfeld A J, Rodriguez M. Phosphorus, regulation of plasma calcium, and secondary hyperparathyroidism: a hypothesis to integrate a historical and modern perspective. J Am Soc Nephrol, 1999; 10 (4): 878-890. doi: 10.1681/ASN.V104878
    [32]
    Elliott P, Kesteloot H, Appel L J, et al. Dietary phosphorus and blood pressure: international study of macro- and micro-nutrients and blood pressure. Hypertension, 2008; 51 (3): 669-675. doi: 10.1161/HYPERTENSIONAHA.107.103747
    [33]
    Resnick L M. The role of dietary calcium in hypertension: a hierarchical overview. Am J Hypertens, 1999; 12 (1 Pt 1): 99-112. doi: 10.1016/S0895-7061(98)00275-1
    [34]
    Das U N. Nutritional factors in the pathobiology of human essential hypertension. Nutrition, 2001; 17 (4): 337-346. doi: 10.1016/S0899-9007(00)00586-4
    [35]
    Nawrot T S, Staessen J A, Roels H A, et al. Blood pressure and blood selenium: a cross-sectional and longitudinal population study. Eur Heart J, 2007; 28 (5): 628-633. doi: 10.1093/eurheartj/ehl479
    [36]
    Hu X F, Eccles K M, Chan H M. High selenium exposure lowers the odds ratios for hypertension, stroke, and myocardial infarction associated with mercury exposure among Inuit in Canada. Environ Int, 2017; 102: 200-206. doi: 10.1016/j.envint.2017.03.002
    [37]
    Kim J. Dietary zinc intake is inversely associated with systolic blood pressure in young obese women. Nutr Res Pract, 2013; 7 (5): 380-384. doi: 10.4162/nrp.2013.7.5.380
    [38]
    Kasai M, Miyazaki T, Takenaka T, et al. Excessive zinc intake increases systemic blood pressure and reduces renal blood flow via kidney angiotensin Ⅱ in rats. Biol Trace Elem Res, 2012; 150 (1-3): 285-290. doi: 10.1007/s12011-012-9472-z
    [39]
    Bergomi M, Rovesti S, Vinceti M, et al. Zinc and copper status and blood pressure. J Trace Elem Med Biol, 1997; 11 (3): 166-169. doi: 10.1016/S0946-672X(97)80047-8
    [40]
    Williams C R, Mistry M, Cheriyan A M, et al. Zinc deficiency induces hypertension by promoting renal Na (+) reabsorption. Am J Physiol Renal Physiol, 2019; 316 (4): F646-F653. doi: 10.1152/ajprenal.00487.2018
    [41]
    Altorf-Van Der Kuil W, Engberink M F, Brink E J, et al. Dietary protein and blood pressure: a systematic review. PLoS One, 2010; 5 (8): e12102. doi: 10.1371/journal.pone.0012102
    [42]
    Robin S, Maupoil V, Groubatch F, et al. Effect of a methionine-supplemented diet on the blood pressure of Wistar-Kyoto and spontaneously hypertensive rats. Br J Nutr, 2003; 89 (4): 539-548. doi: 10.1079/BJN2002810
    [43]
    Ditscheid B, Fünfstück R, Busch M, et al. Effect of L-methionine supplementation on plasma homocysteine and other free amino acids: a placebo-controlled double-blind cross-over study. Eur J Clin Nutr, 2005; 59 (6): 768-775. doi: 10.1038/sj.ejcn.1602138
    [44]
    Raghavan S A, Dikshit M. Vascular regulation by the L-arginine metabolites, nitric oxide and agmatine. Pharmacol Res, 2004; 49 (5): 397-414. doi: 10.1016/j.phrs.2003.10.008
    [45]
    Altorf-Van Der Kuil W, Engberink M F, De Neve M, et al. Dietary amino acids and the risk of hypertension in a Dutch older population: the Rotterdam Study. Am J Clin Nutr, 2013; 97 (2): 403-410. doi: 10.3945/ajcn.112.038737
    [46]
    Rinschen M, Palygin O, Golosova D, et al. Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension. Nat Commun, 2022; 13 (1): 4099. doi: 10.1038/s41467-022-31670-0
    [47]
    Hou E, Sun N, Zhang F, et al. Malate and Aspartate Increase L-Arginine and Nitric Oxide and Attenuate Hypertension. Cell Rep, 2017; 19 (8): 1631-1639. doi: 10.1016/j.celrep.2017.04.071
  • fzm-4-1-1_ESM.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (409) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return