Citation: | Yanan Ni, Dan Liu, Xiaona Zhang, Hong Qiao. Association of point in range with β-cell function and insulin sensitivity of type 2 diabetes mellitus in cold areas[J]. Frigid Zone Medicine, 2023, 3(4): 242-252. doi: 10.2478/fzm-2023-0031 |
[1] |
Porte D. β-cells in type Ⅱ diabetes mellitus. Diabetes, 1991; 40(2): 166–180. doi: 10.2337/diab.40.2.166
|
[2] |
Defronzo R A. Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes, 1988; 37(6): 667-687. doi: 10.2337/diab.37.6.667
|
[3] |
Stratton I M, Adler A I, Neil H A, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 2000; 321(7258): 405–412. doi: 10.1136/bmj.321.7258.405
|
[4] |
Kramer C K, Choi H, Zinman B, et al. Glycemic variability in patients with early type 2 diabetes: the impact of improvement in β-cell function. Diabetes Care, 2014; 37(4): 1116–1123. doi: 10.2337/dc13-2591
|
[5] |
Liu L, Liu J, Xu L, et al. Lower mean blood glucose during short-term intensive insulin therapy is associated with long-term glycemic remission in patients with newly diagnosed type 2 diabetes: Evidence-based recommendations for standardization. J Diabetes Investig, 2018; 9(4): 908–916. doi: 10.1111/jdi.12782
|
[6] |
Rohlfing C L, Wiedmeyer H M, Little R R, et al. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care, 2002; 25(2): 275–278. doi: 10.2337/diacare.25.2.275
|
[7] |
Nitin S. HbA1c and factors other than diabetes mellitus affecting it. Singapore Med J, 2010; 51(8): 616–22. PMID: 20848057.
|
[8] |
Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care, 2018; 41(11): 2370–2376. doi: 10.2337/dc18-1131
|
[9] |
García-Lorenzo B, Rivero-Santana A, Vallejo-Torres L, et al. Cost-effectiveness analysis of real-time continuous monitoring glucose compared to self-monitoring of blood glucose for diabetes mellitus in Spain. Endocrinol Diabetes Nutr, 2018; 65(7): 380–386. doi: 10.1016/j.endinu.2018.03.008
|
[10] |
Young L A, Buse J B, Weaver M A, et al. Glucose self-monitoring in non-insulin-treated patients with type 2 diabetes in primary care settings: A randomized trial. JAMA Intern Med, 2017; 177(7): 920–929. doi: 10.1001/jamainternmed.2017.1233
|
[11] |
Cutruzzolà A, Irace C, Parise M, et al. Time spent in target range assessed by self-monitoring blood glucose associates with glycated hemoglobin in insulin treated patients with diabetes. Nutr Metab Cardiovasc Dis, 2020; 30(10): 1800–1805. doi: 10.1016/j.numecd.2020.06.009
|
[12] |
The Diabetes Research in Children Network DirecNet Study Group. Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes. J Clin Endocrinol Metab, 2005; 90(6): 3387–3391. doi: 10.1210/jc.2004-2510
|
[13] |
Brackney, Elisabeth D. Enhanced self-monitoring blood glucose in non-insulin requiring Type 2 diabetes: A qualitative study in primary care. J Clin Nurs, 2018; 27(9-10): 2120–2131. doi: 10.1111/jocn.14369
|
[14] |
Kohnert K D, Augstein P, Zander E, et al. Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care, 2009; 32(6): 1058–1062. doi: 10.2337/dc08-1956
|
[15] |
Inker L A, Schmid C H, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med, 2012; 367(1): 20–29. doi: 10.1056/NEJMoa1114248
|
[16] |
Kramer C K, Choi H, Zinman B, et al. Determinants of reversibility of β-cell dysfunction in response to short-term intensive insulin therapy in patients with early type 2 diabetes. Am J Physiol Endocrinol Metab, 2013; 305(11): E1398–E1407. . doi: 10.1152/ajpendo.00447.2013
|
[17] |
Retnakaran R, Shen S, Hanley A J, et al. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring), 2008; 16(8): 1901–1907. doi: 10.1038/oby.2008.307
|
[18] |
Retnakaran R, Qi Y, Goran M I, et al. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med, 2009; 26(12): 1198–1203. doi: 10.1111/j.1464-5491.2009.02841.x
|
[19] |
Matsuda M, DeFronzo R A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999; 22(9): 1462–1470. doi: 10.2337/diacare.22.9.1462
|
[20] |
Matthews D R, Hosker J P, Rudenski A S, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985; 28(7): 412–419. doi: 10.1007/BF00280883
|
[21] |
Defronzo R A, Tripathy D, Schwenke D C, et al. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk. Diabetes Care, 2013; 36(11): 3607–3612. doi: 10.2337/dc13-0520
|
[22] |
Beck R W, Bergenstal R M, Riddlesworth T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes care, 2019; 42(3): 400–405. doi: 10.2337/dc18-1444
|
[23] |
Klatman E L, Jenkins A J, Ahmedani M Y, et al. Blood glucose meters and test strips: global market and challenges to access in low-resource settings. Lancet Diabetes Endocrinol, 2019; 7(2): 150–160. doi: 10.1016/S2213-8587(18)30074-3
|
[24] |
Weinstock R S, Braffett B H, McGuigan P, et al. Self-monitoring of blood glucose in youth-onset type 2 diabetes: results from the TODAY study. Diabetes Care, 2019; 42(5): 903–909. doi: 10.2337/dc18-1854
|
[25] |
Schnell O, Klausmann G, Gutschek B, et al. Impact on diabetes self-management and glycemic control of a new color-based SMBG meter. J Diabetes Sci Technol, 2017; 11(6): 1218–1225. doi: 10.1177/1932296817706376
|
[26] |
Zhang Y, Dai J, Han X, et al. Glycemic variability indices determined by self-monitoring of blood glucose are associated with β-cell function in Chinese patients with type 2 diabetes. Diabetes Res Clin Pract, 2020; 164: 108152. doi: 10.1016/j.diabres.2020.108152
|
[27] |
Kilpatrick E S, Rigby A S, Goode K, et al. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes. Diabetologia, 2007; 50(12): 2553-2561. doi: 10.1007/s00125-007-0820-z
|
[28] |
Schnell O, Barnard K, Bergenstal R, et al. Clinical utility of SMBG: recommendations on the use and reporting of SMBG in clinical research. Diabetes Care, 2015; 38(9): 1627–1633. doi: 10.2337/dc14-2919
|
[29] |
Swisa A, Glaser B, Dor Y. Metabolic stress and compromised identity of pancreatic beta cells. Front Genet, 2017; 8: 21.
|
[30] |
Veres A, Faust A L, Bushnell H L, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature, 2019; 569(7756): 368–373. doi: 10.1038/s41586-019-1168-5
|
[31] |
Sun J, Ni Q, Xie J, et al. β-Cell dedifferentiation in patients with T2D with adequate glucose control and nondiabetic chronic pancreatitis. J Clin Endocrinol Metab, 2019; 104(1): 83–94. doi: 10.1210/jc.2018-00968
|
[32] |
Wang Z, York N W, Nichols C G, et al. Pancreatic β-cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab, 2014; 19(5): 872–882. doi: 10.1016/j.cmet.2014.03.010
|
[33] |
Murata M, Adachi H, Oshima S, et al. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic β-cell dysfunction in patients with coronary artery disease. Diabetes Res Clin Pract, 2017; 131: 107–115. doi: 10.1016/j.diabres.2017.07.007
|
[34] |
Wu N, Shen H, Liu H, et al. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol, 2016; 15(1): 109. doi: 10.1186/s12933-016-0427-0
|
[35] |
Kahn S E, Prigeon R L, McCulloch D K, et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes, 1993; 42: 1663-1667. doi: 10.2337/diab.42.11.1663
|
[36] |
Wang T, Lu J, Shi L, et al. Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol, 2020; 8(2): 115–124. doi: 10.1016/S2213-8587(19)30425-5
|
[37] |
Keane K N, Cruzat V F, Carlessi R, et al. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev, 2015; 2015: 181643.
|
[38] |
Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy on β-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet, 2008; 371(9626): 1753–1760. doi: 10.1016/S0140-6736(08)60762-X
|
[39] |
Ma M, Liu H, Yu J. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis, 2020; 19(1): 121. doi: 10.1186/s12944-020-01303-w
|
[40] |
Fiorentino T V, Succurro E, Marini M A, et al. HDL cholesterol is an independent predictor of β-cell function decline and incident type 2 diabetes: A longitudinal study. Diabetes Metab Res Rev, 2020; 36(4): e3289. doi: 10.1002/dmrr.3289
|
[41] |
Rutti S, Ehses J A, Sibler R A, et al. Low and high-density lipoproteins modulate function, apoptosis and proliferation of primary human and murine pancreatic beta cells. Endocrinology, 2009; 150: 4521–4530. doi: 10.1210/en.2009-0252
|
[42] |
Young K A, Maturu A, Lorenzo C, et al. The triglyceride to high-density lipoprotein choles-terol (TG/HDL-C) ratio as a predictor of insulin resistance, b-cell function, and diabetes in His-panics and African Americans. J Diabetes Complications, 2019; 33: 118–122. doi: 10.1016/j.jdiacomp.2018.10.018
|
[43] |
Ochoa-Rosales C, Portilla-Fernandez E, Nano J, et al. Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care, 2020; 43(4): 875–884. doi: 10.2337/dc19-1828
|
[44] |
Yang Y M, Shin B C, Son C, et al. An analysis of the associations between gender and metabolic syndrome components in Korean adults: a national cross-sectional study. BMC Endocr Disord, 2019; 19(1): 67. doi: 10.1186/s12902-019-0393-0
|
[45] |
Arslanian S, Bacha F, Grey M, et al. Evaluation and management of youth-onset type 2 diabetes: a position statement by the American Diabetes Association. Diabetes Care, 2018; 41(12): 2648–2668. doi: 10.2337/dci18-0052
|
[46] |
Hope S V, Knight B A, Shields B M, et al. Random non-fasting C-peptide: bringing robust assessment of endogenous insulin secretion to the clinic. Diabet Med, 2016; 33(11): 1554–1558. doi: 10.1111/dme.13142
|
[47] |
Arslanian S, El Ghormli L, Bacha F, et al. Adiponectin, insulin sensitivity, β-cell function, and racial/ethnic disparity in treatment failure rates in TODAY. Diabetes Care, 2017; 40(1): 85–93. doi: 10.2337/dc16-0455
|
fzm-3-4-242_ESM.pdf |