Citation: | Xiaowei Wan, Qiuhai Qin, Ruitang Xie, Xin Li, Min Su. Network pharmacology-based approach for exploring the biotargets and mechanisms of vitamin A for the treatment of diabetic foot ulcers[J]. Frigid Zone Medicine, 2023, 3(3): 186-192. doi: 10.2478/fzm-2023-0023 |
[1] |
Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018; 14(2): 88–98. doi: 10.1038/nrendo.2017.151
|
[2] |
Yang L, Shao J, Bian Y, et al. Prevalence of type 2 diabetes mellitus among inland residents in China (2000–2014): A meta-analysis. J Diabetes Investig, 2016; 7(6): 845–852. doi: 10.1111/jdi.12514
|
[3] |
Malemute C L, Shultz J A, Ballejos M, et al. Goal setting education and counseling practices of diabetes educators. Diabetes Educ, 2011; 37(4): 549–563. doi: 10.1177/0145721711410718
|
[4] |
Wheeler L A, Wheeler M L, Ours P, et al. Evaluation of computer-based diet education in persons with diabetes mellitus and limited educational background. Diabetes Care, 1985; 8(6): 537–544. doi: 10.2337/diacare.8.6.537
|
[5] |
Armstrong D G, Boulton A J M, Bus S A. Diabetic foot ulcers and their recurrence. N Engl J Med, 2017; 376(24): 2367–2375. doi: 10.1056/NEJMra1615439
|
[6] |
Sen P, Demirdal T. Evaluation of mortality risk factors in diabetic foot infections. Int Wound J, 2020; 17(4): 880–889. doi: 10.1111/iwj.13343
|
[7] |
Lim J Z, Ng N S, Thomas C. Prevention and treatment of diabetic foot ulcers. J R Soc Med, 2017; 110(3): 104–109. doi: 10.1177/0141076816688346
|
[8] |
Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci, 2018; 1411(1): 153–165. doi: 10.1111/nyas.13569
|
[9] |
Braun L R, Fisk W A, Lev-Tov H, et al. Diabetic foot ulcer: an evidence-based treatment update. Am J Clin Dermatol, 2014; 15(3): 267–281. doi: 10.1007/s40257-014-0081-9
|
[10] |
Pena G, Kuang B, Cowled P, et al. Micronutrient status in diabetic patients with foot ulcers. Adv Wound Care (New Rochelle), 2020; 9(1): 9–15. doi: 10.1089/wound.2019.0973
|
[11] |
Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr, 2017; 57(11): 2404–2411. doi: 10.1080/10408398.2015.1060940
|
[12] |
Iskakova M, Karbyshev M, Piskunov A, et al. Nuclear and extranuclear effects of vitamin A. Can J Physiol Pharmacol, 2015; 93(12): 1065–1075. doi: 10.1139/cjpp-2014-0522
|
[13] |
Blaner W S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol Ther, 2019; 197: 153–178. doi: 10.1016/j.pharmthera.2019.01.006
|
[14] |
Olsen T, Blomhoff R. Retinol, retinoic acid, and retinol-binding protein 4 are differentially associated with cardiovascular disease, type 2 diabetes, and obesity: An overview of human studies. Adv Nutr, 2020; 11(3): 644–666. doi: 10.1093/advances/nmz131
|
[15] |
Chen Q, Feng Y, Yang H, et al. A vitamin pattern diet is associated with decreased risk of gestational diabetes mellitus in chinese women: Results from a case control study in Taiyuan, China. J Diabetes Res, 2019; 2019: 5232308.
|
[16] |
Rostamkhani H, Mellati A A, Tabaei B S, et al. Association of serum zinc and vitamin A levels with severity of retinopathy in type 2 diabetic patients: a cross-sectional study. Biol Trace Elem Res, 2019; 192(2): 123–128. doi: 10.1007/s12011-019-01664-z
|
[17] |
Nogales C, Mamdouh Z M, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci, 2022; 43(2): 136–150. doi: 10.1016/j.tips.2021.11.004
|
[18] |
Liu J, Guo C, Wang Y, et al. Preclinical insights into fucoidan as a nutraceutical compound against perfluorooctanoic acid-associated obesity via targeting endoplasmic reticulum stress. Front Nutr, 2022; 9: 950130. doi: 10.3389/fnut.2022.950130
|
[19] |
Liang X, Pan Q, Liao Y, et al. In silico analysis and experimental validation to exhibit anti-nasopharyngeal carcinoma effects of plumbagin, an anti-cancer compound. J Sci Food Agric, 2022; 102(12): 5460–5467. doi: 10.1002/jsfa.11900
|
[20] |
Pundir S, Martin M J, O'Donovan C, et al. UniProt tools. Curr Protoc Bioinformatics, 2016; 53: 1.29.1–1.29.15.
|
[21] |
Fonseka P, Pathan M, et al. FunRich enables enrichment analysis of OMICs datasets. J Mol Biol, 2021; 433(11): 166747. doi: 10.1016/j.jmb.2020.166747
|
[22] |
Szklarczyk D, Gable A L, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019; 47(D1): D607–D613. doi: 10.1093/nar/gky1131
|
[23] |
Doncheva N T, Morris J H, Gorodkin J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res, 2019; 18(2): 623–632. doi: 10.1021/acs.jproteome.8b00702
|
[24] |
Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci, 2018; 1411(1): 153–165. doi: 10.1111/nyas.13569
|
[25] |
Sanz-Corbalán I, Lázaro-Martínez J L, García-Morales E, et al. Advantages of early diagnosis of diabetic neuropathy in the prevention of diabetic foot ulcers. Diabetes Res Clin Pract, 2018; 146: 148–154. doi: 10.1016/j.diabres.2017.12.018
|
[26] |
Zinder R, Cooley R, Vlad L G, et al. Vitamin A and wound healing. Nutr Clin Pract, 2019; 34(6): 839–849. doi: 10.1002/ncp.10420
|
[27] |
Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr, 2017; 57(11): 2404–2411. doi: 10.1080/10408398.2015.1060940
|
[28] |
Pena G, Kuang B, Cowled P, et al. Micronutrient status in diabetic patients with foot ulcers. Adv Wound Care (New Rochelle), 2020; 9(1): 9–15. doi: 10.1089/wound.2019.0973
|
[29] |
Schonthaler H B, Guinea-Viniegra J, Wagner E F. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis, 2011; 70(Suppl 1): i109–12. doi: 10.1136/ard.2010.140533
|
[30] |
Lang J, Yang C, Liu L, et al. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers. Exp Cell Res, 2021; 403(1): 112550. doi: 10.1016/j.yexcr.2021.112550
|
[31] |
Xu S, Weng X, Wang Y, et al. Screening and preliminary validation of T lymphocyte immunoregulation associated long non coding RNAs in diabetic foot ulcers. Mol Med Rep, 2019; 19(3): 2368–2376.
|
[32] |
Laimer M. MAPK14 as candidate for genetic susceptibility to diabetic foot ulcer. Br J Dermatol, 2017; 177(6): 1482–1483. doi: 10.1111/bjd.15990
|
[33] |
Meng W, Veluchamy A, Hébert H L, et al. A genome-wide association study suggests that MAPK14 is associated with diabetic foot ulcers. Br J Dermatol, 2017; 177(6): 1664–1670. doi: 10.1111/bjd.15787
|
[34] |
Izquierdo M C, Shanmugarajah N, Lee S X, et al. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. J Clin Invest, 2022; 132(7): e146219. doi: 10.1172/JCI146219
|
[35] |
Liao S, Lin X, Mo C. Integrated analysis of circRNA-miRNA-mRNA regulatory network identifies potential diagnostic biomarkers in diabetic foot ulcer. Noncoding RNA Res, 2020; 5(3): 116–124. doi: 10.1016/j.ncrna.2020.07.001
|
[36] |
Fang Z, Deng Q, Hu H, et al. Characteristics of immunogenic and tolerogenic dendritic cells within the arterial wall in atherosclerosis and in vitro. Int J Clin Exp Med, 2014; 7(12): 4846–4856.
|