Citation: | Xiangyu Bian, Xi Li, Tong Xu, Li Zhang, Yongqiang Zhang, Shuai Wu, Renren Yang, Weiyun Dong, Changjiang Guo, Danfeng Yang, Weina Gao. Cold exposure alters proteomic profiles of the hypothalamus and pituitary in female rats[J]. Frigid Zone Medicine, 2023, 3(2): 114-125. doi: 10.2478/fzm-2023-0015 |
[1] |
Wang X, Su M, Qiu Y, et al. Metabolic regulatory network alterations in response to acute cold stress and ginsenoside intervention. J Proteome Res, 2007; 6(9): 3449-3455. doi: 10.1021/pr070051w
|
[2] |
Manfredi L H, Zanon N M, Garófalo M A, et al. Effect of short-term cold exposure on skeletal muscle protein breakdown in rats. J Appl Physiol, 2013; 115(10): 1496-1505. doi: 10.1152/japplphysiol.00474.2013
|
[3] |
Yüksel Ş, Asma D. Effects of extended cold exposure on antioxidant defense system of rat hypothalamic–pituitary–adrenal axis. J Therm Biol, 2006; 31(4): 313-317. doi: 10.1016/j.jtherbio.2005.12.007
|
[4] |
Mulligan J D, Gonzalez A A, Stewart A M, et al. Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol, 2007; 580(2): 677-684. doi: 10.1113/jphysiol.2007.128652
|
[5] |
Nomura T, Kawano F, Kang M S, et al. Effects of long-term cold exposure on contractile muscles of rats. Jpn J Physiol, 2002; 52(1): 85-93. doi: 10.2170/jjphysiol.52.85
|
[6] |
Park J J, Lee H, Shin M, et al. Short-term cold exposure may cause a local decrease of neuropeptide Y in the rat hypothalamus. Mol cells, 2007; 23(1): 88-93.
|
[7] |
Labbé S M, Caron A, Lanfray D, et al. Hypothalamic control of brown adipose tissue thermogenesis. Front Syst Neurosci, 2015; 9: 150.
|
[8] |
van der Lans A A, Hoeks J, Brans B, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest, 2013; 123(8): 3395-3403. doi: 10.1172/JCI68993
|
[9] |
Lee P, Linderman J D, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab, 2014; 19(2): 302-309. doi: 10.1016/j.cmet.2013.12.017
|
[10] |
Rondeel J M, de Greef W J, Hop W C, et al. Effect of cold exposure on the hypothalamic release of thyrotropin-releasing hormone and catecholamines. Neuroendocrinology, 1991; 54(5): 477-481. doi: 10.1159/000125940
|
[11] |
Brissoni B, Agostini L, Kropf M, et al. Intracellular Trafficking of Interleukin-1 Receptor I Requires Tollip. Currt Biol, 2006; 16(22): 2265-2270. doi: 10.1016/j.cub.2006.09.062
|
[12] |
Zhao L J, Subramanian T, Zhou Y, et al. Acetylation by p300 regulates nuclear localization and function of the transcriptional corepressor CtBP2. J Biol Chem, 2006; 281(7): 4183-4189. doi: 10.1074/jbc.M509051200
|
[13] |
Cao L, Ren Y, Guo X, et al. Downregulation of SETD7 promotes migration and invasion of lung cancer cells via JAK2/STAT3 pathway. Int J Mol Med, 2020; 45(5): 1616-1626.
|
[14] |
Ramchandran R, Mehta D, Vogel S M, et al. Critical role of Cdc42 in mediating endothelial barrier protection in vivo. Am J Physiol Lung Cell Mol Physiol, 2008; 295(2): L363-369. doi: 10.1152/ajplung.90241.2008
|
[15] |
Chen Y, Lin J, Chen J, et al. Mfn2 is involved in intervertebral disc degeneration through autophagy modulation. Osteoarthritis Cartilage, 2020; 28(3): 363-374. doi: 10.1016/j.joca.2019.12.009
|
[16] |
Davis T B, Yang M, Schell M J, et al. PTPRS regulates colorectal cancer RAS pathway activity by inactivating Erk and preventing its nuclear translocation. Sci Reps, 2018; 8(1): 9296. doi: 10.1038/s41598-018-27584-x
|
[17] |
Heasman S J, Ridley A J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol, 2008; 9(9): 690-701. doi: 10.1038/nrm2476
|
[18] |
Castellani J W, Young A J. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure. Auton Neurosci, 2016; 196: 63-74. doi: 10.1016/j.autneu.2016.02.009
|
[19] |
Lei M, Zhang D, Sun Y, et al. Web-based transcriptome analysis determines a sixteen-gene signature and associated drugs on hearing loss patients: A bioinformatics approach. J Clin Lab Anal, 2021; 35(12): e24065.
|
[20] |
Nobes C D, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 1995; 81(1): 53-62. doi: 10.1016/0092-8674(95)90370-4
|
[21] |
Dai M X, Zheng X H, Yu J, et al. The Impact of intermittent and repetitive cold stress exposure on endoplasmic reticulum stress and instability of atherosclerotic plaques. Cell Physiol Biochem, 2014; 34(2): 393-404. doi: 10.1159/000363008
|
[22] |
He S, Owen D R, Jelinsky S A, et al. Lysine methyltransferase SETD7 (SET7/9) Regulates ROS Signaling through mitochondria and NFE2L2/ARE pathway. Sci Rep, 2015; 5(1): 14368. doi: 10.1038/srep14368
|
[23] |
Chouchani E T, Kazak L, Jedrychowski M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature, 2016; 532(7597): 112-116. doi: 10.1038/nature17399
|