Citation: | Xin Zhao, Lihua Sun, Chao Chen, Jieru Xin, Yan Zhang, Yunlong Bai, Zhenwei Pan, Yong Zhang, Baoxin Li, Yanjie Lv, Baofeng Yang. Hydroxychloroquine induces long QT syndrome by blocking hERG channel[J]. Frigid Zone Medicine, 2023, 3(2): 105-113. doi: 10.2478/fzm-2023-0014 |
[1] |
Filchakova O, Dossym D, Ilyas A, et al. Review of COVID-19 testing and diagnostic methods [J]. Talanta, 2022; 244: 123409. doi: 10.1016/j.talanta.2022.123409
|
[2] |
Trivedi N, Verma A, Kumar D. Possible treatment and strategies for COVID-19: review and assessment. Eur Rev Med Pharmacol Sci, 2020; 24(23): 12593-12608.
|
[3] |
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020; 30(3): 269-271. doi: 10.1038/s41422-020-0282-0
|
[4] |
Jorge A, Ung C, Young L, et al. Hydroxychloroquine retinopathy - implications of research advances for rheumatology care. Nat Rev Rheumatol, 2018; 14(12): 693-703. doi: 10.1038/s41584-018-0111-8
|
[5] |
McChesney E W. Animal toxicity and pharmacokinetics of hydroxychloroquine sulfate. Am J Med, 1983; 75(1a): 11-18.
|
[6] |
Gautret P, Lagier J C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020; 56(1): 105949. doi: 10.1016/j.ijantimicag.2020.105949
|
[7] |
Borba M G S, Val F F A, Sampaio V S, et al. Effect of high vs. low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open, 2020; 3(4): e208857. doi: 10.1001/jamanetworkopen.2020.8857
|
[8] |
Vincent M J, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J, 2005; 2: 69. doi: 10.1186/1743-422X-2-69
|
[9] |
Lescure F X, Bouadma L, Nguyen D, et al. Clinical and virological data of the first cases of COVID-19 in Europe: a case series. Lancet Infec Dis, 2020; 20(6): 697-706. doi: 10.1016/S1473-3099(20)30200-0
|
[10] |
In't Veld A E, Jansen M A A, Ciere L C A, et al. Hydroxychloroquine effects on TLR signaling: Under exposed but unneglectable in COVID-19. J Immunol Res, 2021; 6659410.
|
[11] |
Torigoe M, Sakata K, Ishii A, et al. Hydroxychloroquine efficiently suppresses inflammatory responses of human class-switched memory B cells via Toll-like receptor 9 inhibition. Clin Immunol, 2018; 195: 1-7. doi: 10.1016/j.clim.2018.07.003
|
[12] |
Meo S A, Klonoff D C, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci, 2020; 24(8): 4539-4547.
|
[13] |
Lopez A, Duclos G, Pastene B, et al. Effects of hydroxychloroquine on COVID-19 in intensive care unit patients: preliminary results. Int J Antimicrob Agents, 2020; 56(5): 106136. doi: 10.1016/j.ijantimicag.2020.106136
|
[14] |
Molina J M, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect, 2020; 50(4): 384. doi: 10.1016/j.medmal.2020.03.006
|
[15] |
Good M I, Shader R I. Lethality and behavioral side effects of chloroquine. J Clin Psychopharmacol, 1982; 2(1): 40-47. doi: 10.1097/00004714-198202000-00005
|
[16] |
Al-Bari M A. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother, 2015; 70(6): 1608-1621. doi: 10.1093/jac/dkv018
|
[17] |
Doyno C, Sobieraj D M, Baker W L. Toxicity of chloroquine and hydroxychloroquine following therapeutic use or overdose. Clin Toxicol (Phila), 2021; 59(1): 12-23. doi: 10.1080/15563650.2020.1817479
|
[18] |
Yendrapalli U, Ali H, Green J L, et al. Effects of cardiac toxicity of combination therapy with hydroxychloroquine and azithromycin in COVID-19 patients. J Infect Public Health, 2021; 14(11): 1668-1670. doi: 10.1016/j.jiph.2021.09.013
|
[19] |
Magagnoli J, Narendran S, Pereira F, et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19. medRxiv, 2020: 20065920.
|
[20] |
Rosenberg E S, Dufort E M, Udo T, et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA, 2020; 323(24): 2493-2502. doi: 10.1001/jama.2020.8630
|
[21] |
Gopinathannair R, Merchant F M, Lakkireddy D R, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol, 2020; 59(2): 329-336. doi: 10.1007/s10840-020-00789-9
|
[22] |
Yu R, Li P. Computational and experimental studies on the inhibitory mechanism of hydroxychloroquine on hERG. Toxicology, 2021; 458: 152822. doi: 10.1016/j.tox.2021.152822
|
[23] |
Sanguinetti M C, Jiang C, Curran M E, et al. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell, 1995; 81(2): 299-307. doi: 10.1016/0092-8674(95)90340-2
|
[24] |
Zhang Y, Dong Z, Jin L, et al. Arsenic trioxide-induced hERG K+ channel deficiency can be rescued by matrine and oxymatrine through up-regulating transcription factor Sp1 expression. Biochem Pharmacol, 2013; 85(1): 59-68. doi: 10.1016/j.bcp.2012.09.002
|
[25] |
Lamothe S M, Zhang S. Chapter five - ubiquitination of ion channels and transporters. Prog Mol Biol Transl Sci, 2016; 141: 161-223.
|
[26] |
Mitcheson J S, Chen J, Lin M, et al. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A, 2000; 97(22): 12329-33. doi: 10.1073/pnas.210244497
|
[27] |
Oscanoa T J, Vidal X, Kanters J K, et al. Frequency of Long QT in Patients with SARS-CoV-2 Infection Treated with Hydroxychloroquine: A Meta-analysis. Int J Antimicrob Agents, 2020: 56(6): 106212.
|
[28] |
Anneken L, Baumann S, Vigneault P, et al. Estradiol regulates human QT-interval: acceleration of cardiac repolarization by enhanced KCNH2 membrane trafficking. Eur Heart J, 2016; 37(7): 640-650. doi: 10.1093/eurheartj/ehv371
|
[29] |
Stadler K, Masignani V, Eickmann M, et al. SARS--beginning to understand a new virus. Nat Rev Microbiol, 2003; 1(3): 209-218. doi: 10.1038/nrmicro775
|
[30] |
Chafekar A, Fielding B C. MERS-CoV: Understanding the latest human coronavirus threa. Viruses, 2018; 10(2): 93. doi: 10.3390/v10020093
|
[31] |
Jartti T, Jartti L, Ruuskanen O, et al. New respiratory viral infections. Curr Opin Pulm Med, 2012; 18(3): 271-278. doi: 10.1097/MCP.0b013e328351f8d4
|
[32] |
Ciotti M, Angeletti S, Minieri M, et al. COVID-19 Outbreak: An Overview. Chemotherapy, 2019; 64: 215-223. doi: 10.1159/000507423
|
[33] |
He W, Yi G Y, Zhu Y. Estimation of the basic reproduction number, average incubation time, asymptomatic infection rate, and case fatality rate for COVID-19: Meta-analysis and sensitivity analysis. J Med Virol, 2020; 92(11): 2543-2550. doi: 10.1002/jmv.26041
|
[34] |
Yaqoob H, Greenberg D, Hwang F, et al. Comparison of pulse-dose and high-dose corticosteroids with no corticosteroid treatment for COVID-19 pneumonia in the intensive care unit. J Med Virol, 2022; 94(1): 349-356. doi: 10.1002/jmv.27351
|
[35] |
Wang W, Zhang N, Guo W, et al. Combined pharmacotherapy for osteonecrosis of the femoral head after severe acute respiratory syndrome and interstitial pneumonia: two and a half to fourteen year follow-up. Int Orthop, 2018; 42(7): 1551-1556. doi: 10.1007/s00264-018-3907-x
|
[36] |
Elavarasi A, Prasad M, Seth T, et al. Chloroquine and hydroxychloroquine for the Treatment of COVID-19: a Systematic Review and Meta-analysis. J Gen Intern Med, 2020; 35(11): 3308-3314. doi: 10.1007/s11606-020-06146-w
|
[37] |
Million M, Lagier J C, Gautret P, et al. Early treatment of COVID-19 patients with hydroxychloroquine and azithromycin: A retrospective analysis of 1061 cases in Marseille, France. Travel Med Infect Dis, 2020; 35: 101738. doi: 10.1016/j.tmaid.2020.101738
|
[38] |
Shah S, Das S, Jain A, et al. A systematic review of the prophylactic role of chloroquine and hydroxychloroquine in coronavirus disease-19 (COVID-19). Int J Rheum Dis, 2020; 23(5): 613-619. doi: 10.1111/1756-185X.13842
|
[39] |
Kaufman E S. Arrhythmic risk in congenital long QT syndrome. J Electrocardiol, 2011; 44(6): 645-649. doi: 10.1016/j.jelectrocard.2011.07.023
|
[40] |
Zhou Z, Gong Q, January C T. Correction of defective protein trafficking of a mutant HERG potassium channel in human long QT syndrome. Pharmacological and temperature effects. J Biol Chem, 1999; 274(44): 31123-31126.
|