Citation: | Yue Liu, Yongchen Wang. The effect of living environment on developmental disorders in cold regions[J]. Frigid Zone Medicine, 2023, 3(1): 22-29. doi: 10.2478/fzm-2023-0004 |
[1] |
Corsello G, Giuffrè M. Congenital malformations. J Matern Fetal Neonatal Med, 2012; 25 Suppl 1: 25-29.
|
[2] |
Baldacci S, Gorini F, Santoro M, et al. Environmental and individual exposure and the risk of congenital anomalies: a review of recent epidemiological evidence. Esposizione ambientale e individuale e rischio di anomalie congenite: una rassegna delle evidenze epidemiologiche recenti. Epidemiol Prev, 2018; 42(3-4 Suppl 1): 1-34.
|
[3] |
Groisman B, Bermejo-Sánchez E, Romitti P A, et al. Join World Birth Defects Day. Pediatr Res, 2019; 86(1): 3-4. doi: 10.1038/s41390-019-0392-x
|
[4] |
Global PaedSurg Research Collaboration. Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study. Lancet, 2021; 398(10297): 325-339. doi: 10.1016/S0140-6736(21)00767-4
|
[5] |
Dai L, Zhu J, Liang J, et al. Birth defects surveillance in China. World J Pediatr, 2011; 7(4): 302-310. doi: 10.1007/s12519-011-0326-0
|
[6] |
Agopian A J, Evans J A, Lupo P J. Analytic methods for evaluating patterns of multiple congenital anomalies in birth defect registries. Birth Defects Res, 2018; 110(1): 5-11. doi: 10.1002/bdr2.1115
|
[7] |
Paudel P, Sunny A K, Gurung R, et al. Burden and consequence of birth defects in Nepal-evidence from prospective cohort study. BMC Pediatr, 2021; 21(1): 81. doi: 10.1186/s12887-021-02525-2
|
[8] |
Zhou Y, Mao X, Zhou H, et al. Birth defects data from population-based birth defects surveillance system in a district of southern Jiangsu, China, 2014-2018. Front Public Health, 2020; 8: 378. doi: 10.3389/fpubh.2020.00378
|
[9] |
Global Research on Developmental Disabilities Collaborators. Developmental disabilities among children younger than 5 years in 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Glob Health, 2018; 6(10): e1100-e1121. doi: 10.1016/S2214-109X(18)30309-7
|
[10] |
Ko J K, Lamichhane D K, Kim H C, et al. Trends in the prevalences of selected birth defects in Korea (2008-2014). Int J Environ Res Public Health, 2018; 15(5): 923. doi: 10.3390/ijerph15050923
|
[11] |
Geneti S A, Dimsu G G, Sori D A, et al. Prevalence and patterns of birth defects among newborns in southwestern Ethiopia: a retrospective study. Pan Afr Med J, 2021; 40: 248.
|
[12] |
Le M T, Shumate C J, Hoyt A T, et al. The prevalence of birth defects among non-Hispanic Asian/Pacific Islanders and American Indians/Alaska Natives in Texas, 1999-2015. Birth Defects Res, 2019; 111(18): 1380-1388. doi: 10.1002/bdr2.1543
|
[13] |
Hao Y, Zhuang D, Jiao X. Seasonal variation of nonsyndromic orofacial clefts in northern Chinese population. J Craniofac Surg, 2022; 33(2): 642-644. doi: 10.1097/SCS.0000000000008185
|
[14] |
Liu Q G, Sun J, Xiao X W, et al. Birth defects data from surveillance hospitals in Dalian city, China, 2006-2010. J Matern Fetal Neonatal Med, 2016; 29(22): 3615-3621. doi: 10.3109/14767058.2016.1140136
|
[15] |
Wang X, Yue H, Li S, et al. The effects of inositol metabolism in pregnant women on offspring in the north and south of China. Med Sci Monit, 2020; 26: e921088.
|
[16] |
Baldacci S, Gorini F, Santoro M, et al. Environmental and individual exposure and the risk of congenital anomalies: a review of recent epidemiological evidence. Esposizione ambientale e individuale e rischio di anomalie congenite: una rassegna delle evidenze epidemiologiche recenti. Epidemiol Prev, 2018; 42(3-4 Suppl 1): 1-34.
|
[17] |
Candotto V, Oberti L, Gabrione F, et al. Current concepts on cleft lip and palate etiology. J Biol Regul Homeost Agents, 2019; 33(3 Suppl. 1): 145-151.
|
[18] |
Chen Z, Li S, Guo L, et al. Prenatal alcohol exposure induced congenital heart diseases: From bench to bedside. Birth Defects Res, 2021; 113(7): 521-534. doi: 10.1002/bdr2.1743
|
[19] |
Tran D, Maiorana A, Ayer J, et al. Recommendations for exercise in adolescents and adults with congenital heart disease. Prog Cardiovasc Dis, 2020; 63(3): 350-366. doi: 10.1016/j.pcad.2020.03.002
|
[20] |
Jiang R, Zhao Y Q, Wang Y C, et al. Discussion on the model of community managemengt of chronic diseases in cold areas. Frigid Zone Medcine, 2021; 1(1): 17-22. doi: 10.2478/fzm-2021-0004
|
[21] |
Kodak T, Bergmann S. Autism spectrum disorder: characteristics, associated behaviors, and early intervention. Pediatr Clin North Am, 2020; 67(3): 525-535. doi: 10.1016/j.pcl.2020.02.007
|
[22] |
Solmi M, Song M, Yon D K, et al. Incidence, prevalence, and global burden of autism spectrum disorder from 1990 to 2019 across 204 countries. Mol Psychiatry, 2022; 27(10): 4172-4180. doi: 10.1038/s41380-022-01630-7
|
[23] |
Sun X, Allison C, Wei L, et al. Autism prevalence in China is comparable to Western prevalence. Mol Autism, 2019; 10: 7. doi: 10.1186/s13229-018-0246-0
|
[24] |
Lee B K, Gross R, Francis R W, et al. Birth seasonality and risk of autism spectrum disorder. Eur J Epidemiol, 2019; 34(8): 785-792. doi: 10.1007/s10654-019-00506-5
|
[25] |
Sgritta M, Dooling S W, Buffington S A, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron, 2019; 101(2): 246-259. e6. doi: 10.1016/j.neuron.2018.11.018
|
[26] |
Siracusano M, Riccioni A, Abate R, et al. Vitamin D deficiency and autism spectrum disorder. Curr Pharm Des, 2020; 26(21): 2460-2474. doi: 10.2174/1381612826666200415174311
|
[27] |
Dutheil F, Comptour A, Morlon R, et al. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. Environ Pollut, 2021; 278: 116856. doi: 10.1016/j.envpol.2021.116856
|
[28] |
Becerra-Culqui T A, Getahun D, Chiu V, et al. Prenatal influenza vaccination or influenza infection and autism spectrum disorder in offspring. Clin Infect Dis, 2022; 75(7): 1140-1148. doi: 10.1093/cid/ciac101
|
[29] |
Dutheil F, Comptour A, Morlon R, et al. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. Environ Pollut, 2021; 278: 116856. doi: 10.1016/j.envpol.2021.116856
|
[30] |
Beghi E. The epidemiology of epilepsy. Neuroepidemiology, 2020; 54(2): 185-191. doi: 10.1159/000503831
|
[31] |
MacEachern S J, Santoro J D, Hahn K J, et al. Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala. Neuroradiology, 2020; 62(3): 389-397. doi: 10.1007/s00234-019-02332-8
|
[32] |
Singh G, Sander J W. The global burden of epilepsy report: Implications for low- and middle-income countries. Epilepsy Behav, 2020; 105: 106949. doi: 10.1016/j.yebeh.2020.106949
|
[33] |
GBD 2016 Epilepsy Collaborators. Global, regional, and national burden of epilepsy, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol, 2019; 18(4): 357-375. doi: 10.1016/S1474-4422(18)30454-X
|
[34] |
Zheng G, Li F, Chen Y, et al. An epidemiological survey of epilepsy in tropical rural areas of China. Epilepsia Open, 2021; 6(2): 323-330. doi: 10.1002/epi4.12476
|
[35] |
Syvertsen M, Koht J, Nakken K O. Prevalence and incidence of epilepsy in the Nordic countries. Tidsskr Nor Laegeforen, 2015; 135(18): 1641-1645. doi: 10.4045/tidsskr.15.0454
|
[36] |
Chang K C, Wu T H, Fann J C, et al. Low ambient temperature as the only meteorological risk factor of seizure occurrence: A multivariate study. Epilepsy Behav, 2019; 100(Pt A): 106283.
|
[37] |
Alasfar R H, Isaifan R J. Aluminum environmental pollution: the silent killer. Environ Sci Pollut Res Int, 2021; 28(33): 44587-44597. doi: 10.1007/s11356-021-14700-0
|
[38] |
Gunata M, Parlakpinar H, Acet H A. Melatonin: A review of its potential functions and effects on neurological diseases. Rev Neurol (Paris), 2020; 176(3): 148-165. doi: 10.1016/j.neurol.2019.07.025
|
[39] |
Guo Y, Du P, Guo L, et al. Alcohol use among patients with epilepsy in western China. A hospital-based study. Epilepsy Behav, 2021; 124: 108302. doi: 10.1016/j.yebeh.2021.108302
|
[40] |
Dolbec K, Mick N W. Congenital heart disease. Emerg Med Clin North Am, 2011; 29(4): 811-827, vii. doi: 10.1016/j.emc.2011.08.005
|
[41] |
Su Z, Zou Z, Hay S I, et al. Global, regional, and national time trends in mortality for congenital heart disease, 1990-2019: An age-period-cohort analysis for the Global Burden of Disease 2019 study. E Clinical Medicine, 2022; 43: 101249.
|
[42] |
GBD 2017 Congenital Heart Disease Collaborators. Global, regional, and national burden of congenital heart disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc Health, 2020; 4(3): 185-200. doi: 10.1016/S2352-4642(19)30402-X
|
[43] |
Liu F, Yang Y N, Xie X, et al. Prevalence of congenital heart disease in Xinjiang multi-ethnic region of China. PLoS One, 2015; 10(8): e0133961. doi: 10.1371/journal.pone.0133961
|
[44] |
Han S, Wei C Y, Hou Z L, et al. Prevalence of congenital heart disease amongst schoolchildren in southwest China. Indian Pediatr, 2020; 57(2): 138-141. doi: 10.1007/s13312-020-1731-z
|
[45] |
Xia Y Q, Zhao K N, Zhao A D, et al. Associations of maternal upper respiratory tract infection/influenza during early pregnancy with congenital heart disease in offspring: evidence from a case-control study and meta-analysis. BMC Cardiovasc Disord, 2019; 19(1): 277. doi: 10.1186/s12872-019-1206-0
|
[46] |
Mills J L, Troendle J, Conley M R, et al. Maternal obesity and congenital heart defects: a population-based study. Am J Clin Nutr, 2010; 91(6): 1543-1549. doi: 10.3945/ajcn.2009.28865
|
[47] |
Yang B Y, Qu Y, Guo Y, et al. Maternal exposure to ambient air pollution and congenital heart defects in China. Environ Int, 2021; 153: 106548. doi: 10.1016/j.envint.2021.106548
|
[48] |
Soheilirad Z. Folic acid intake in prevention of congenital heart defects: A mini evidence review. Clin Nutr ESPEN, 2020; 38: 277-279. doi: 10.1016/j.clnesp.2020.05.021
|
[49] |
Salari N, Darvishi N, Heydari M, et al. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis. J Stomatol Oral Maxillofac Surg, 2022; 123(2): 110-120. doi: 10.1016/j.jormas.2021.05.008
|
[50] |
Zhu Y, Miao H, Zeng Q, et al. Prevalence of cleft lip and/or cleft palate in Guangdong province, China, 2015-2018: a spatio-temporal descriptive analysis. BMJ Open, 2021; 11(8): e046430. doi: 10.1136/bmjopen-2020-046430
|
[51] |
Alonso R R H, Brigetty G P S. Analysis of the prevalence and incidence of cleft lip and palate in Colombia. Cleft Palate Craniofac J, 2020; 57(5): 552-559. doi: 10.1177/1055665619886455
|
[52] |
Sofianos C, Christofides E A, Phiri S E. Seasonal variation of orofacial clefts. J Craniofac Surg, 2018; 29(2): 368-371. doi: 10.1097/SCS.0000000000004226
|
[53] |
Meng Q, Luo J, Li L, et al. Rubella seroprevalence among pregnant women in Beijing, China. BMC Infect Dis, 2018; 18(1): 130. doi: 10.1186/s12879-018-3032-x
|
[54] |
Auslander A, McKean-Cowdin R, Brindopke F, et al. The role of smoke from cooking indoors over an open flame and parental smoking on the risk of cleft lip and palate: A case-control study in 7 low-resource countries. J Glob Health, 2020; 10(2): 020410. doi: 10.7189/jogh.10.020410
|
[55] |
Davies K J M, Richmond S, Medeiros-Mirra R J, et al. The effect of maternal smoking and alcohol consumption on lip morphology. J Orthod, 2022; 49(4): 403-411. doi: 10.1177/14653125221094337
|
[56] |
Rezaallah B, Lewis D J, Zeilhofer H F, et al. Risk of cleft lip and/or palate associated with antiepileptic drugs: Postmarketing safety signal detection and evaluation of information presented to prescribers and patients. Ther Innov Regul Sci, 2019; 53(1): 110-119. doi: 10.1177/2168479018761638
|
[57] |
Girguis M S, Strickland M J, Hu X, et al. Maternal exposure to traffic-related air pollution and birth defects in Massachusetts. Environ Res, 2016; 146: 1-9. doi: 10.1016/j.envres.2015.12.010
|
[58] |
Gmeiner M, Wagner H, Zacherl C, et al. Long-term mortality rates in pediatric hydrocephalus-a retrospective single-center study. Childs Nerv Syst, 2017; 33(1): 101-109. doi: 10.1007/s00381-016-3268-y
|
[59] |
Tamber M S. Insights into the epidemiology of infant hydrocephalus. Childs Nerv Syst, 2021; 37(11): 3305-3311. doi: 10.1007/s00381-021-05157-0
|
[60] |
Liu J, Jin L, Li Z, et al. Prevalence and trend of isolated and complicated congenital hydrocephalus and preventive effect of folic acid in northern China, 2005-2015. Metab Brain Dis, 2018; 33(3): 837-842. doi: 10.1007/s11011-017-0172-4
|
[61] |
Abebe M S, Seyoum G, Emamu B, et al. Congenital hydrocephalus and associated risk factors: An institution-based case-control study, Dessie Town, North East Ethiopia. Pediatric Health Med Ther, 2022; 13: 175-182. doi: 10.2147/PHMT.S364447
|
[62] |
Liu J, Li Z, Ye R, et al. Folic acid supplementation and risk for congenital hydrocephalus in China. Public Health Nutr, 2021; 24(13): 4238-4244. doi: 10.1017/S136898002100029X
|
[63] |
Costa L G, Cole T B, Dao K, et al. Developmental impact of air pollution on brain function. Neurochem Int, 2019; 131: 104580. doi: 10.1016/j.neuint.2019.104580
|
[64] |
Li T, Fang J, Tang S, et al. PM2.5 exposure associated with microbiota gut-brain axis: Multi-omics mechanistic implications from the BAPE study. Innovation (Camb), 2022; 3(2): 100213.
|
[65] |
Percy Z, DeFranco E, Xu F, et al. Trimester specific PM2.5 exposure and fetal growth in Ohio, 2007-2010. Environ Res, 2019; 171: 111-118. doi: 10.1016/j.envres.2019.01.031
|
[66] |
Wang L, Xiang X, Mi B, et al. Association between early prenatal exposure to ambient air pollution and birth defects: evidence from newborns in Xi'an, China. J Public Health (Oxf), 2019; 41(3): 494-501. doi: 10.1093/pubmed/fdy137
|
[67] |
Zhang Q, Sun S, Sui X, et al. Associations between weekly air pollution exposure and congenital heart disease. Sci Total Environ, 2021; 757: 143821. doi: 10.1016/j.scitotenv.2020.143821
|
[68] |
Huang C C, Chen B Y, Pan S C, et al. Prenatal exposure to PM2.5 and Congenital Heart Diseases in Taiwan. Sci Total Environ, 2019; 655: 880-886. doi: 10.1016/j.scitotenv.2018.11.284
|
[69] |
Li B, Xia M, Zorec R, et al. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res, 2021; 1752: 147234. doi: 10.1016/j.brainres.2020.147234
|
[70] |
Gasmi A, Noor S, Piscopo S, et al. Toxic metal -mediated neurodegradation: A focus on glutathione and GST gene variants. Arch Razi Inst, 2022; 77(2): 525-536.
|
[71] |
Ramakrishnan R, Stuart A L, Salemi J L, et al. Maternal exposure to ambient cadmium levels, maternal smoking during pregnancy, and congenital diaphragmatic hernia. Birth Defects Res, 2019; 111(18): 1399-1407. doi: 10.1002/bdr2.1555
|
[72] |
Wang S Y, Cheng Y Y, Guo H R, et al. Air pollution during pregnancy and childhood autism spectrum disorder in Taiwan. Int J Environ Res Public Health, 2021; 18(18): 9784. doi: 10.3390/ijerph18189784
|
[73] |
Huang X, Chen J, Zeng D, et al. The association between ambient air pollution and birth defects in five major ethnic groups in Liuzhou, China. BMC Pediatr, 2021; 21(1): 232. doi: 10.1186/s12887-021-02687-z
|
[74] |
Roberts D J, Post M D. The placenta in pre-eclampsia and intrauterine growth restriction. J Clin Pathol, 2008; 61(12): 1254-1260. doi: 10.1136/jcp.2008.055236
|
[75] |
Bedell S, Hutson J, de Vrijer B, et al. effects of maternal obesity and gestational diabetes mellitus on the placenta: Current knowledge and targets for therapeutic interventions. Curr Vasc Pharmacol, 2021; 19(2): 176-192. doi: 10.2174/18756212MTA3qNDApy
|
[76] |
Huerta-Cervantes M, Peña-Montes D J, López-Vázquez M Á, et al. Effects of gestational diabetes in cognitive behavior, oxidative stress and metabolism on the second-generation off-spring of rats. Nutrients, 2021; 13(5): 1575. doi: 10.3390/nu13051575
|
[77] |
Tinker S C, Gilboa S M, Moore C A, et al. Specific birth defects in pregnancies of women with diabetes: National birth defects prevention study, 1997-2011. Am J Obstet Gynecol, 2020; 222(2): 176. e1-176. e11. doi: 10.1016/j.ajog.2019.08.028
|
[78] |
Auger N, Fraser W D, Healy-Profitós J, et al. Association between preeclampsia and congenital heart defects. JAMA, 2015; 314(15): 1588-1598. doi: 10.1001/jama.2015.12505
|
[79] |
Lin Y W, Lin M H, Pai L W, et al. Population-based study on birth outcomes among women with hypertensive disorders of pregnancy and gestational diabetes mellitus. Sci Rep, 2021; 11(1): 17391. doi: 10.1038/s41598-021-96345-0
|
[80] |
Saiyin T, Engineer A, Greco E R, et al. Maternal voluntary exercise mitigates oxidative stress and incidence of congenital heart defects in pre-gestational diabetes. J Cell Mol Med, 2019; 23(8): 5553-5565. doi: 10.1111/jcmm.14439
|
[81] |
Samson K L I, Loh S P, Lee S S, et al. Weekly iron-folic acid supplements containing 2.8 mg folic acid are associated with a lower risk of neural tube defects than the current practice of 0.4 mg: a randomised controlled trial in Malaysia. BMJ Glob Health, 2020; 5(12): e003897. doi: 10.1136/bmjgh-2020-003897
|
[82] |
Munger R G, Kuppuswamy R, Murthy J, et al. Maternal Vitamin B12 status and risk of cleft lip and cleft palate birth defects in Tamil Nadu State, India. Cleft Palate Craniofac J, 2021; 58(5): 567-576. doi: 10.1177/1055665621998394
|
[83] |
Yang J, Kang Y, Chang Q, et al. Maternal Zinc, Copper, and Selenium intakes during pregnancy and congenital heart defects. Nutrients, 2022; 14(5): 1055. doi: 10.3390/nu14051055
|
[84] |
Ajmone-Cat M A, De Simone R, Tartaglione A M, et al. Critical role of maternal selenium nutrition in neurodevelopment: Effects on offspring behavior and neuroinflammatory profile. Nutrients, 2022; 14(9): 1850. doi: 10.3390/nu14091850
|
[85] |
Perry M F, Mulcahy H, DeFranco E A. Influence of periconception smoking behavior on birth defect risk. Am J Obstet Gynecol, 2019; 220(6): 588. e1-588. e7. doi: 10.1016/j.ajog.2019.02.029
|
[86] |
Li J, Du Y J, Wang H L, et al. Association between maternal passive smoking during perinatal period and congenital heart disease in their offspring-based on a case-control study. Zhonghua Liu Xing Bing Xue Za Zhi, 2020; 41(6): 884-889.
|
[87] |
Meng X, Sun Y, Duan W, et al. Meta-analysis of the association of maternal smoking and passive smoking during pregnancy with neural tube defects. Int J Gynaecol Obstet, 2018; 140(1): 18-25. doi: 10.1002/ijgo.12334
|
[88] |
Shi J, Tian Y, Lei Y, et al. Active and passive maternal smoking during pregnancy and risk of having a child with polydactyly: a case-control study. Zhonghua Liu Xing Bing Xue Za Zhi, 2018; 39(11): 1482-1485.
|
[89] |
Yin C, Cai H, Yang D, et al. Cigarette smoke induced neural tube defects by down-regulating noggin expression. Birth Defects Res, 2021; 113(1): 5-13. doi: 10.1002/bdr2.1804
|
[90] |
Luderer M, Ramos Quiroga J A, Faraone S V, et al. Alcohol use disorders and ADHD. Neurosci Biobehav Rev, 2021; 128: 648-660. doi: 10.1016/j.neubiorev.2021.07.010
|
[91] |
Strandberg-Larsen K, Skov-Ettrup L S, Grønbaek M, et al. Maternal alcohol drinking pattern during pregnancy and the risk for an offspring with an isolated congenital heart defect and in particular a ventricular septal defect or an atrial septal defect. Birth Defects Res A Clin Mol Teratol, 2011; 91(7): 616-622. doi: 10.1002/bdra.20818
|
[92] |
Barinaga M. Neurobiology. A new clue to how alcohol damages brains. Science, 2000; 287(5455): 947-948. doi: 10.1126/science.287.5455.947
|
[93] |
Chen Z, Li S, Guo L, et al. Prenatal alcohol exposure induced congenital heart diseases: From bench to bedside. Birth Defects Res, 2021; 113(7): 521-534. doi: 10.1002/bdr2.1743
|
[94] |
Messinger C J, Lipsitch M, Bateman B T, et al. Association between congenital cytomegalovirus and the prevalence at birth of microcephaly in the United States. JAMA Pediatr, 2020; 174(12): 1159-1167. doi: 10.1001/jamapediatrics.2020.3009
|
[95] |
Zhang L, Wang X, Liu M, et al. The epidemiology and disease burden of congenital TORCH infections among hospitalized children in China: A national cross-sectional study. PLoS Negl Trop Dis, 2022; 16(10): e0010861. doi: 10.1371/journal.pntd.0010861
|
[96] |
Bookstaver P B, Bland C M, Griffin B, et al. A review of antibiotic use in pregnancy. Pharmacotherapy, 2015; 35(11): 1052-1062. doi: 10.1002/phar.1649
|
[97] |
Hamilton S T, Scott G, Naing Z, et al. Human cytomegalovirus-induces cytokine changes in the placenta with implications for adverse pregnancy outcomes. PLoS One, 2012; 7(12): e52899. doi: 10.1371/journal.pone.0052899
|
[98] |
Zhu P, Zhang Z H, Huang X F, et al. Cold exposure promotes obesity and impairs glucose homeostasis in mice subjected to a highfat diet. Mol Med Rep, 2018; 18(4): 3923-3931.
|