Citation: | Xinrui Wei, Yongchen Wang. Contemporary understanding of the risk factors for chronic kidney disease in cold area[J]. Frigid Zone Medicine, 2022, 2(4): 204-213. doi: 10.2478/fzm-2022-0028 |
[1] |
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2020; 395(10225): 709-733. doi: 10.1016/S0140-6736(20)30045-3
|
[2] |
Bello A, Levin A, Tonelli M, et al. Global Kidney Health Atlas: A report by the international society of nephrology on the current state of organization and structures for kidney care across the Globe, Brussels, Belgium: International Society of Nephrology, 2019.
|
[3] |
Song X, Wang S, Hu Y, et al. Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci Total Environ, 2017; 586: 241-254. doi: 10.1016/j.scitotenv.2017.01.212
|
[4] |
Wang F, He K, Wang J, et al. Prevalence and risk factors for CKD: A comparison between the adult populations in China and the United States. Kidney Int Rep, 2018; 3(5): 1135-1143. doi: 10.1016/j.ekir.2018.05.011
|
[5] |
Zhang L, Zhao M H, Zuo L, et al. China Kidney Disease Network (CKNET) 2016 annual data report. Kidney Int Suppl (2011), 2020; 10(2): e97-e185. doi: 10.1016/j.kisu.2020.09.001
|
[6] |
National Bureau of Statistics of China. China Statistics Yearbook 2016. Beijing: China Statistics Press, 2017.
|
[7] |
Jiang R, Zhao Y, Wang Y. Discussion on the model of community management of chronic diseases in cold areas. Frigid Zone Medicine, 2020; 1(1): 17-22.
|
[8] |
GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study. Global Health Metrics, 2020; 396(10258): 1223-1249.
|
[9] |
Song J, Qin W, Wang R, et al. A global comprehensive analysis of ambient low temperature and non-communicable diseases burden during 1990-2019. Environ Sci Pollut Res Int, 2022; 29(44): 66136-66147. doi: 10.1007/s11356-022-20442-4
|
[10] |
Gouda H N, Charlson F, sorsdahl K, et al. Burden of noncommunicable diseases in sub-Saharan Africa, 1990-2017: results from the Global Burden of Disease Study. Lancet Glob Health, 2019; 7(10): e1375-e1387. doi: 10.1016/S2214-109X(19)30374-2
|
[11] |
UNAIDS. Full Report — In Danger: UNAIDS Global AIDS Update 2022. Geneva, Switzerland: Global Data on HIV Epidemiology and Response, 2022.
|
[12] |
Wyatt, C, Meliambro K, Klotman P. Recent Progress in HIVassociated nephropathy. Annul Rev Med, 2012; 63: 1–13. doi: 10.1146/annurev-med-050710-134457
|
[13] |
Bundhamcharoen K, Odton P, Phulkerd S, et al. Burden of disease in Thailand: changes in health gap between 1999 and 2004. BMC Public Health, 2011; 11: 53. doi: 10.1186/1471-2458-11-53
|
[14] |
Chen R, Kang E, Ji X, et al. Cold regions in China. Cold Regions Science and Technology, 2006; 45(2): 95–102. doi: 10.1016/j.coldregions.2006.03.001
|
[15] |
Zhang L, Wang F, Wang L, et al. Prevalence of chronic kidney disease in China: a cross-sectional survey. Lancet, 2012; 379(9818): 815-822. doi: 10.1016/S0140-6736(12)60033-6
|
[16] |
McCormack M C, Paulin L M, Gummerson C E, et al. Colder temperature is associated with increased COPD morbidity. Eur Respir J, 2017; 49(6): 1601501. doi: 10.1183/13993003.01501-2016
|
[17] |
Wang X, Jiang Y, Bai Y, et al. Association between air temperature and the incidence of acute coronary heart disease in Northeast China. Clin Interv Aging, 2020; 15: 47-52. doi: 10.2147/CIA.S235941
|
[18] |
Vallianou N G, Geladari E V, Kounatidis D, et al. Diabetes mellitus in the era of climate change. Diabetes Metab, 2021; 47(4): 101205. doi: 10.1016/j.diabet.2020.10.003
|
[19] |
Phanprasit W, Chotiphan C, Auttanate N, et al. Cold-related pain in the face, upper limbs, and lower body among thai chicken industry workers: a cross-sectional study. Int. Arch. Occup. Environ. Health, 2021; 94(5): 799-812. doi: 10.1007/s00420-020-01640-4
|
[20] |
Patten S B, Williams J V, Lavorato D H, et al. Major depression prevalence increases with latitude in Canada. Can J Psychiatry, 2017; 62(1): 62-66. doi: 10.1177/0706743716673323
|
[21] |
Wang J, Lin X, Bloomgarden Z T, et al. The Jiangnan diet, a healthy diet pattern for Chinese. J Diabetes, 2020; 12(5): 365-371. doi: 10.1111/1753-0407.13015
|
[22] |
Wang X, Liu A, Du M, et al. Diet quality is associated with reduced risk of hypertension among Inner Mongolia adults in northern China. Public Health Nutr, 2020; 23(9): 1543-1554. doi: 10.1017/S136898001900301X
|
[23] |
Cao Y J, Wang H J, Zhang B, et al. Associations of fat and carbohydrate intake with becoming overweight and obese: an 11-year longitudinal cohort study. Br J Nutr, 2020; 124(7): 715-728. doi: 10.1017/S0007114520001579
|
[24] |
Htet A S, Kjøllesdal M K, Aung W P, et al. Lipid profiles and determinants of total cholesterol and hypercholesterolemia among 25-74 years old urban and rural citizens of the Yangon Region, Myanmar: a cross-sectional study. BMJ Open, 2017; 7(11): e017465. doi: 10.1136/bmjopen-2017-017465
|
[25] |
Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem Biol Interact, 2016; 245: 1-11. doi: 10.1016/j.cbi.2015.11.033
|
[26] |
Xi Y, Niu L, Cao N, et al. Prevalence of dyslipidemia and associated risk factors among adults aged ≥35 years in northern China: a crosssectional study. BMC Public Health, 2020; 20(1): 1068. doi: 10.1186/s12889-020-09172-9
|
[27] |
Karpov Y, Khomitskaya Y. Prometheus: an observational, crosssectional, retrospective study of hypertriglyceridemia in Russia. Cardiovasc Diabetol, 2015; 14: 115. doi: 10.1186/s12933-015-0268-2
|
[28] |
Moorhead J F, Chan M K, El-Nahas M, et al. Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet, 1982; 2(8311): 1309-1311.
|
[29] |
Ruan X Z, Varghese Z, Moorhead JF. An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol. 2009; 5(12): 713-721. doi: 10.1038/nrneph.2009.184
|
[30] |
Cabandugama P K, Gardner M J, Sowers J R. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am, 2017: 101; 129-137. doi: 10.1016/j.mcna.2016.08.009
|
[31] |
Panizo S, Martínez-Arias L, Alonso-Montes C, et al. Fibrosis in chronic kidney disease: pathogenesis and consequences. Int J Mol Sci, 2021; 22(1): 408. doi: 10.3390/ijms22010408
|
[32] |
Culver S, Li C, Siragy H M. Intrarenal angiotensin-converting enzyme: the old and the new. Curr Hypertens Rep, 2017; 19(10): 80. doi: 10.1007/s11906-017-0778-2
|
[33] |
Tagawa A, Yasuda M, Kume S, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes, 2016; 65(3): 755-767. doi: 10.2337/db15-0473
|
[34] |
Weisinger J R, Kempson R L, Eldridge F L, et al. The nephrotic syndrome: a complication of massive obesity. Ann Intern Med, 1974; 81(4): 440-447. doi: 10.7326/0003-4819-81-4-440
|
[35] |
Piperidou A, Loutradis C, Sarafidis P. SGLT-2 inhibitors and nephroprotection: current evidence and future perspectives. J Hum Hypertens, 2021; 35(1): 12-25. doi: 10.1038/s41371-020-00393-4
|
[36] |
Fu E L, Evans M, Clase C M, et al. Stopping renin-angiotensin system inhibitors in patients with advanced CKD and risk of adverse outcomes: a nationwide study. J Am Soc Nephrol, 2021; 32(2): 424-435. doi: 10.1681/ASN.2020050682
|
[37] |
Rodrigues J C, Haas M, Reich H N. IgA nephropathy. Clin J Am Soc Nephrol, 2017; 12(4): 677-686. doi: 10.2215/CJN.07420716
|
[38] |
Zheng Z G, Zhu S T, Cheng H M, et al. Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway. Autophagy, 2021; 17(7): 1592-1613. doi: 10.1080/15548627.2020.1757955
|
[39] |
Kuwahara S, Hosojima M, Kaneko R, et al. megalin-mediated tubuloglomerular alterations in high-fat diet-induced kidney disease. J Am Soc Nephrol, 2016; 27(7): 1996-2008. doi: 10.1681/ASN.2015020190
|
[40] |
Chen W H, Cao B, Yan J F. Transmembrane protein 126B protects against high fat diet (HFD)-induced renal injury by suppressing dyslipidemia via inhibition of ROS. Biochem Biophys Res Commun. 2019; 509(1): 40-47. doi: 10.1016/j.bbrc.2018.12.003
|
[41] |
WHO. Guideline: Sodium intake for adults and children. World Health Organization (WHO), 2012.
|
[42] |
Powles J, Fahimi S, Micha R, et al. Global, regional, and national sodium intakes in 1990 and 2010: a systematic analysis of 24h urinary sodium excretion and dietary surveys worldwide. BMJ Open, 2013; 3(12): e003733. doi: 10.1136/bmjopen-2013-003733
|
[43] |
Meyer H E, Johansson L, Eggen A, et al. Salt intake assessed by 24-hour urine excretion in the Tromso Study 2015–2016. Eur. J. Prev. Cardiol, 2017; 24: S12.
|
[44] |
Chen S L, Dahl C, Meyer H E, et al. Estimation of salt intake assessed by 24-hour urinary sodium excretion among somali adults in Oslo, Norway. Nutrients, 2018; 10(7): 900. doi: 10.3390/nu10070900
|
[45] |
Wei W. Studies have again shown that salt intake in China is high. The food industry, 2019, 19(7): 152.
|
[46] |
Saeki K, Obayashi K, Tone N, et al. Daytime cold exposure, and salt intake based on nocturnal urinary sodium excretion: A cross-sectional analysis of the HEIJO-KYO study. Physiol Behav, 2015; 152(Pt A): 300-306.
|
[47] |
Liedtke W B, McKinley M J, Walker L L, et al. Relation of addiction genes to hypothalamic gene changes subserving genesis and gratification of a classic instinct, sodium appetite. Proc Natl Acad Sci U S A, 2011; 108(30): 12509-12514. doi: 10.1073/pnas.1109199108
|
[48] |
Kang M, Kang E, Ryu H, et al. Measured sodium excretion is associated with CKD progression: results from the KNOW-CKD study. Nephrol Dial Transplant, 2021; 36(3): 512-519. doi: 10.1093/ndt/gfaa107
|
[49] |
Weinberger M H, Miller J Z, Luft F C, et al. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension, 1986; 8(6 Pt 2): 127- 134.
|
[50] |
Parfrey P S, Markandu N D, Roulston J E, et al. Relation between arterial pressure, dietary sodium intake, and renin system in essential hypertension. Br Med J (Clin Res Ed), 1981; 283: 94–97. doi: 10.1136/bmj.283.6284.94
|
[51] |
Cao W, Li A, Wang L, et al. A salt-induced reno-cerebral reflex activates renin-angiotensin systems and promotes CKD progression. J Am Soc Nephrol, 2015; 26(7): 1619-1633. doi: 10.1681/ASN.2014050518
|
[52] |
Ayuzawa N, Fujita T. The mineralocorticoid receptor in salt-sensitive hypertension and renal injury. J Am Soc Nephrol, 2021; 32(2): 279-289. doi: 10.1681/ASN.2020071041
|
[53] |
Fenton R A, Flynn A, Shodeinde A, et al. Renal phenotype of UT-A urea transporter knockoutmice. J Am Soc Nephrol, 2005; 16: 1583-92. doi: 10.1681/ASN.2005010031
|
[54] |
Lemetais G, Melander O, Vecchio M, et al. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr, 2017, 57(5): 1883-1890.
|
[55] |
Kanbay M, Yilmaz S, Dincer N, et al. Antidiuretic hormone and serum osmolarity physiology and related outcomes: what is old, what is new, and what is unknown? J Clin Endocrinol Metab, 2019; 104(11): 5406-5420. doi: 10.1210/jc.2019-01049
|
[56] |
Kitiyakara C, Chabrashvili T, Chen Y, et al. Salt intake, oxidative stress, and renal expression of NADPH oxidase and superoxide dismutase. J Am Soc Nephrol, 2003; 14(11): 2775-2782. doi: 10.1097/01.ASN.0000092145.90389.65
|
[57] |
Feng W, Ying W Z, Aaron K J, et al. Transforming growth factor-β mediates endothelial dysfunction in rats during high salt intake. Am J Physiol Renal Physiol, 2015; 309(12): F1018-F1025. doi: 10.1152/ajprenal.00328.2015
|
[58] |
Hendriksen M A H, Over E A B, Navis G, et al. Limited salt consumption reduces the incidence of chronic kidney disease: a modeling study. J Public Health (Oxf), 2018; 40(3): e351-e358. doi: 10.1093/pubmed/fdx178
|
[59] |
Graudal N A, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev, 2020; 12(12): CD004022.
|
[60] |
Kidney Dis. Improv. Glob. Outcomes (KDIGO) CKD Work Group. 2013. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic. Kidney Int. Suppl, 2013; 3(1): 1-136.
|
[61] |
Malhotra R, Lipworth L, Cavanaugh K L, et al. Protein intake and long-term change in glomerular filtration rate in the Jackson heart study. J Ren Nutr, 2 2018; 28(4): 245-250. doi: 10.1053/j.jrn.2017.11.008
|
[62] |
Esmeijer K, Geleijnse J M, et al. Dietary protein intake and kidney function decline after myocardial infarction: the alpha omega cohort. Nephrol Dial Transplant, 2020; 35(1): 106-115. doi: 10.1093/ndt/gfz015
|
[63] |
Haring B, Selvin E, Liang M, et al. Dietary protein sources and risk for incident chronic kidney disease: Results from the atherosclerosis risk in communities (ARIC) study. J Ren Nutr, 2017; 27(4): 233-242. doi: 10.1053/j.jrn.2016.11.004
|
[64] |
Lew Q L J, Jafar T H, Koh H W L, et al. Red meat intake and risk of ESRD. J Am Soc Nephrol, 2017; 28(1): 304-312. doi: 10.1681/ASN.2016030248
|
[65] |
Haring B, Selvin E, Liang M, et al. Dietary protein sources and risk for incident chronic kidney disease: results from the Atherosclerosis Risk in Communities (ARIC) Study. J Ren Nutr, 2017; 27(4): 233-242.
|
[66] |
Wang Z, Bergeron N, Levison B S, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J, 2019; 40(7): 583-594. doi: 10.1093/eurheartj/ehy799
|
[67] |
Lau W L, Savoj J, Nakata M B, et al Altered microbiome in chronic kidney disease: systemic effects of gut-derived uremic toxins. Clin Sci (Lond), 2018; 132(5): 509-522. doi: 10.1042/CS20171107
|
[68] |
Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N Engl J Med, 2017; 377: 1765-1776. doi: 10.1056/NEJMra1700312
|
[69] |
Silva L, Moço S A, Antunes M L, et al. Dietary Acid Load and relationship with Albuminuria and Glomerular Filtration Rate in individuals with chronic kidney disease at Predialysis State. Nutrients, 2021; 14(1): 170. doi: 10.3390/nu14010170
|
[70] |
Ho B B, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol, 2021; 66(2): R23-R32. doi: 10.1530/JME-20-0178
|
[71] |
Trujillo J, Ramírez V, Pérez J, et al. Renal protection by a soy diet in obese Zucker rats is associated with restoration of nitric oxide generation. Am J Physiol Renal Physiol, 2005; 288(1): F108-F116. doi: 10.1152/ajprenal.00077.2004
|
[72] |
Meneely G R, Ball C O. Experimental epidemiology of chronic sodium chloride toxicity and the protective effect of potassium chloride, Am. J. Med, 1958; 25(5): 713-725. doi: 10.1016/0002-9343(58)90009-3
|
[73] |
Di Iorio B R, Micco Di L, Marzocco S, et al. On behalf of ubi study group. Very Low-Protein Diet (VLPD) reduces metabolic acidosis in subjects with chronic kidney disease: the "Nutritional Light Signal" of the renal acid load. Nutrients, 2017; 9: 69. doi: 10.3390/nu9010069
|
[74] |
Goraya N, Simoni J, Jo C H, et al. Treatment of metabolic acidosis in patients with stage 3 chronic kidney disease with fruits and vegetables or oral bicarbonate reduces urine angiotensinogen and preserves glomerular filtration rate. Kidney Int, 2014; 86: 1031-1038. doi: 10.1038/ki.2014.83
|
[75] |
Jhee J H, Kee Y K, Park J T, et al. A diet rich in vegetables and fruit and incident CKD: A Community-Based Prospective cohort study. Am J Kidney Dis, 2019; 74(4): 491-500. doi: 10.1053/j.ajkd.2019.02.023
|
[76] |
Rysz J, Franczyk B, Ciałkowska-Rysz A, et al. The effect of diet on the survival of patients with chronic kidney disease. Nutrients, 2017; 9(5): 495. doi: 10.3390/nu9050495
|
[77] |
Phillips S M, Paddon-Jones D, Layman D K. Optimizing adult protein intake during catabolic health conditions. Adv Nutr, 2020; 11(4): S1058-S1069. doi: 10.1093/advances/nmaa047
|
[78] |
Sasai F, Roncal-Jimenez C, Rogers K, et al. Climate change and nephrology. Nephrol Dial Transplant, 2021; gfab258.
|
[79] |
He L, Xue B, Wang B, et al. Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990-2019: A global analysis. Environ Res, 2022; 212(Pt A): 113172.
|
[80] |
Hong J, Xuelong Z. Effects of cold stimulus on the histology structure of skeletal muscle and senven visceral organs in rats. Chin J Vet Sci, 2019; 39(1): 105-112.
|
[81] |
Lovallo W. The cold pressor test and autonomic function: a review and integration. Psychophysiology, 1975; 12(3): 268-82. doi: 10.1111/j.1469-8986.1975.tb01289.x
|
[82] |
Sun L, Yan J, Goh H J, et al. Fibroblast growth factor-21, leptin, and adiponectin responses to acute cold-induced brown adipose tissue activation. J Clin Endocrinol Metab, 2020; 105(3): e520-e531. doi: 10.1210/clinem/dgaa005
|
[83] |
Amiya E, Watanabe M, Komuro I. The relationship between vascular function and the autonomic nervous system. Ann Vasc Dis, 2014; 7: 109-119. doi: 10.3400/avd.ra.14-00048
|
[84] |
Mao W, Jin X, Wang H, et al. The Association between resting heart rate and urinary albumin/creatinine ratio in middle-aged and elderly Chinese population: a cross-sectional study. J Diabetes Res, 2019; 2019: 9718370.
|
[85] |
Chou Y H, Huang W L, Chang C H, et al. Heart rate variability as a predictor of rapid renal function deterioration in chronic kidney disease patients. Nephrology (Carlton), 2019; 24(8): 806-813. doi: 10.1111/nep.13514
|
[86] |
Efremova A, Colleluori G, Thomsky M, et al. Biomarkers of browning in cold exposed siberian adults. Nutrients, 2020; 12(8): 2162. doi: 10.3390/nu12082162
|
[87] |
Hanssen M J, Broeders E, Samms R J, et al. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep, 2015; 5: 10275. doi: 10.1038/srep10275
|
[88] |
Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol, 2017; 13(1): 26-35. doi: 10.1038/nrendo.2016.136
|
[89] |
Ameka M, Markan K R, Morgan D A, et al. Liver Derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep, 2019; 9(1): 630. doi: 10.1038/s41598-018-37198-y
|
[90] |
Sepa-Kishi D M, Ceddia R B. Circulating fibroblast growth factor 21 is reduced, whereas its production is increased in a fat depot-specific manner in cold-acclimated rats. Adipocyte, 2018; 7(4): 238-247. doi: 10.1080/21623945.2018.1504591
|
[91] |
Zouhar P, Janovska P, Stanic S, et al. A pyrexic effect of FGF21 independent of energy expenditure and UCP1. Mol Metab, 2021; 53: 101324. doi: 10.1016/j.molmet.2021.101324
|
[92] |
Suassuna P G A, Paula R B, Sanders-Pinheiro H, et al. Fibroblast growth factor 21 in chronic kidney disease. J Nephrol, 2019; 32(3): 365-377. doi: 10.1007/s40620-018-0550-y
|
[93] |
Kondo Y, Komaba H, Fukagawa M. Endocrine fibroblast growth factors as potential biomarkers for chronic kidney disease. Expert Rev Mol Diagn, 2020; 20(7): 715-724. doi: 10.1080/14737159.2020.1780918
|
[94] |
Yusuf S, Piedimonte G, Auais A, et al. The relationship of meteorological conditions to the epidemic activity of respiratory syncytial virus. Epidemiol Infect, 2007; 135(7): 1077-1090. doi: 10.1017/S095026880600776X
|
[95] |
Ciruela P, Broner S, Izquierdo C, et al. Invasive pneumococcal disease rates linked to meteorological factors and respiratory virus circulation (Catalonia, 2006-2012). BMC Public Health, 2016; 16: 400. doi: 10.1186/s12889-016-3061-6
|
[96] |
Nasr S H, Radhakrishnan J, D'Agati V D. Bacterial infection-related glomerulonephritis in adults. Kidney Int, 2013; 83(5): 792-803. doi: 10.1038/ki.2012.407
|
[97] |
Joo S Y, Park M J, Kim K H, et al. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury. Int J Biometeorol, 2016; 60(8): 1217-1225. doi: 10.1007/s00484-015-1116-5
|
[98] |
Lee J, Park E J, Hwang J W, et al. CIP2A expression is associated with synovial hyperplasia and invasive function of fibroblast-like synoviocytes in rheumatoid arthritis. Rheumatol Int, 2012; 32(7): 2023-2030. doi: 10.1007/s00296-011-1927-6
|
[99] |
Eimonte M, Eimantas N, Daniuseviciute L, et al. Recovering body temperature from acute cold stress is associated with delayed proinflammatory cytokine production in vivo. Cytokine, 2021; 143: 155510. doi: 10.1016/j.cyto.2021.155510
|
[100] |
Hochachka P W. Defense strategies against hypoxia and hypothermia. Science, 1986; 231(4735): 234-221. doi: 10.1126/science.2417316
|
[101] |
Honda H M, Korge P, Weiss J N. Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci, 2005; 1047: 248-258. doi: 10.1196/annals.1341.022
|
[102] |
Dugbartey G J, Hardenberg M C, Kok W F, et al. Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal, 2017; 27(9): 599-617. doi: 10.1089/ars.2016.6705
|
[103] |
Xie Z, Xia W, Zhang Z, et al. Prevalence of Vitamin D inadequacy among Chinese postmenopausal women: a nationwide, multicenter, cross-sectional study. Front Endocrinol (Lausanne), 2018; 9: 782.
|
[104] |
Krummel T, Ingwiller M, Keller N, et al. Effects of high- vs lowdose native vitamin D on albuminuria and the renin-angiotensinaldosterone system: a randomized pilot study. Int Urol Nephrol. 2022; 54(4): 895-905. doi: 10.1007/s11255-021-02950-3
|
[105] |
Yu Q, Qiao Y, Liu D, et al. Vitamin D protects podocytes from autoantibodies-induced injury in lupus nephritis by reducing aberrant autophagy. Arthritis Res. Ther, 2019; 21: 19. doi: 10.1186/s13075-018-1803-9
|
[106] |
An X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol, 2008; 19(9): 1741-1752. doi: 10.1681/ASN.2007060666
|
[107] |
Gembillo G, Siligato R, Amatruda M, et al. Vitamin D and glomerulonephritis. Medicina (Kaunas), 2021; 57(2): 186. doi: 10.3390/medicina57020186
|
[108] |
Lutz J, Jurk R N K. Platelets in advanced chronic kidney disease: two sides of the coin. Semin Thromb Hemost, 2020; 46(3): 342-356. doi: 10.1055/s-0040-1708841
|
[109] |
Kelly J T, Su G, Zhang L, et al. Modifiable lifestyle factors for primary prevention of CKD: a systematic review and meta-analysis. J Am Soc Nephrol, 2021; 32(1): 239-253. doi: 10.1681/ASN.2020030384
|
[110] |
Lee S, Kang S, Joo Y S, et al. Smoking, smoking cessation, and progression of Chronic Kidney Disease: results from KNOW-CKD study. Nicotine Tob Res, 2021; 23(1): 92-98. doi: 10.1093/ntr/ntaa071
|
[111] |
Joo Y S, Koh H, Nam K H, et al. Alcohol consumption and progression of chronic kidney disease: results from the Korean cohort study for outcome in patients with chronic kidney disease. Mayo Clin Proc, 2020; 95(2): 293-305. doi: 10.1016/j.mayocp.2019.06.014
|
[112] |
Yuan H C, Yu Q T, Bai H, et al. Alcohol intake and the risk of chronic kidney disease: results from a systematic review and dose-response meta-analysis. Eur J Clin Nutr, 2021; 75(11): 1555-1567. doi: 10.1038/s41430-021-00873-x
|
[113] |
Zhang N H, Luo R, Cheng Y C, et al. Leisure-Time physical activity and mortality in CKD: a 1999-2012 NHANES analysis. Am J Nephrol, 2020; 51(11): 919-929. doi: 10.1159/000511685
|
[114] |
Kuźma Ł, Małyszko J, Bachórzewska-Gajewska H, et al. Exposure to air pollution and renal function. Sci Rep, 2021; 11(1): 11419. doi: 10.1038/s41598-021-91000-0
|
[115] |
Chang T I, Lim H, Park C H, et al. Association between income disparities and risk of chronic kidney disease: a nationwide cohort study of seven million adults in Korea. Mayo Clin Proc, 2020; 95(2): 231-242. doi: 10.1016/j.mayocp.2019.09.028
|
[116] |
Tripathy S, Cai X, Adhikari A, et al. Association of educational attainment with incidence of CKD in young adults. Kidney Int Rep, 2020; 5(12): 2256-2263. doi: 10.1016/j.ekir.2020.09.015
|