Volume 2 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Xiuxiu Wang, Bingjie Hua, Meixi Yu, Shenzhen Liu, Wenya Ma, Fengzhi Ding, Qi Huang, Lai Zhang, Chongwei Bi, Ye Yuan, Mengyu Jin, Tianyi Liu, Ying Yu, Benzhi Cai, Baofeng Yang. Altered expression profile of long non-coding RNAs during heart aging in mice[J]. Frigid Zone Medicine, 2022, 2(2): 109-118. doi: 10.2478/fzm-2022-0015
Citation: Xiuxiu Wang, Bingjie Hua, Meixi Yu, Shenzhen Liu, Wenya Ma, Fengzhi Ding, Qi Huang, Lai Zhang, Chongwei Bi, Ye Yuan, Mengyu Jin, Tianyi Liu, Ying Yu, Benzhi Cai, Baofeng Yang. Altered expression profile of long non-coding RNAs during heart aging in mice[J]. Frigid Zone Medicine, 2022, 2(2): 109-118. doi: 10.2478/fzm-2022-0015

Altered expression profile of long non-coding RNAs during heart aging in mice

doi: 10.2478/fzm-2022-0015
More Information
  • Corresponding author: Benzhi Cai, E-mail: caibz@ems.hrbmu.edu.cn; Baofeng Yang, E-mail: yangbf@ems.hrbmu.edu.cn
  • #These authors contributed equally.

  • Received Date: 2021-01-28
  • Accepted Date: 2021-06-28
  • Available Online: 2022-04-30
  •   Objective  Long noncoding RNAs (lncRNAs) play an important role in regulating the occurrence and development of cardiovascular diseases. However, the role of lncRNAs in heart aging remains poorly understood. The objective of this study was to identify differentially expressed lncRNAs in the heart of aging mice and elucidate the relevant regulatory pathways of cardiac aging.  Materials and methods  Echocardiography was used to detect the cardiac function of 18-months (aged) and 3-months (young) old C57BL/6 mice. Microarray analysis was performed to unravel the expression profiles of lncRNAs and mRNAs, and qRT-PCR to verify the highly dysregulated lncRNAs.  Results  Our results demonstrated that the heart function in aged mice was impaired relative to young ones. Microarray results showed that 155 lncRNAs were upregulated and 37 were downregulated, and 170 mRNAs were significantly upregulated and 44 were remarkably downregulated in aging hearts. Gene ontology analysis indicated that differentially expressed genes are mainly related to immune function, cell proliferation, copper ion response, and cellular cation homeostasis. KEGG pathway analysis showed that the differentially expressed mRNAs are related to cytokine-cytokine receptor interaction, inflammatory mediator regulation of TRP channels, and the NF-kappa B signaling pathway.  Conclusion  These results imply that the differentially expressed lncRNAs may regulate the development of heart aging. This study provides a new perspective on the potential effects and mechanisms of lncRNAs in heart aging.

     

  • loading
  • [1]
    Khaltourina D, Matveyev Y, Alekseev A, et al. Aging fits the disease criteria of the international classification of diseases. Mech Ageing Dev, 2020; 189(366): 111230.
    [2]
    Childs B G, Baker D J, Wijshake T, et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 2016; 354(6311): 472-477. doi: 10.1126/science.aaf6659
    [3]
    Lakatta E G. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part Ⅲ: cellular and molecular clues to heart and arterial aging. Circulation, 2003; 107(3): 490-497. doi: 10.1161/01.CIR.0000048894.99865.02
    [4]
    Lakatta E G, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part Ⅱ: the aging heart in health: links to heart disease. Circulation, 2003; 107(2): 346-354. doi: 10.1161/01.CIR.0000048893.62841.F7
    [5]
    Shih H, Lee B, Lee R J, et al. The aging heart and post-infarction left ventricular remodeling. J Am Coll Cardiol, 2011; 57(1): 9-17. doi: 10.1016/j.jacc.2010.08.623
    [6]
    Torella D, Rota M, Nurzynska D, et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res, 2004; 94(4): 514-524. doi: 10.1161/01.RES.0000117306.10142.50
    [7]
    Zhao C, Li G, Li J. Non-coding RNAs and cardiac aging. Adv Exp Med Biol, 2020; 1229: 247-258.
    [8]
    Wang X, Jiang Y, Bai Y, et al. Association between air temperature and the incidence of acute coronary heart disease in northeast China. Clin Interv Aging, 2020; 15: 47-52. doi: 10.2147/CIA.S235941
    [9]
    Liang J, Yin K, Cao X, et al. Attenuation of low ambient temperatureinduced myocardial hypertrophy by atorvastatin via promoting Bcl-2 expression. Cell Physiol Biochem, 2017; 41(1): 286-295. doi: 10.1159/000456111
    [10]
    Li H M, Liu X, Meng Z Y, et al. Kanglexin delays heart aging by promoting mitophagy. Acta Pharmacol Sin, 2021, Online ahead of print.
    [11]
    Li J, Li S H, Dong J, et al. Long-term repopulation of aged bone marrow stem cells using young Sca-1 cells promotes aged heart rejuvenation. Aging Cell, 2019; 18: e13026.
    [12]
    Li Q, Liu X, Wei J. Ageing related periostin expression increase from cardiac fibroblasts promotes cardiomyocytes senescent. Biochem Biophys Res Commun, 2014; 452(3): 497-502. doi: 10.1016/j.bbrc.2014.08.109
    [13]
    Moslehi J, DePinho R A, Sahin E. Telomeres and mitochondria in the aging heart. Circ Res, 2012; 110(9): 1226-1237. doi: 10.1161/CIRCRESAHA.111.246868
    [14]
    Petrosillo G, Matera M, Moro N, et al. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med, 2009; 46(1): 88-94. doi: 10.1016/j.freeradbiomed.2008.09.031
    [15]
    Martin-Fernandez B, Gredilla R. Mitochondria and oxidative stress in heart aging. Age (Dordr), 2016; 38(4): 225-238. doi: 10.1007/s11357-016-9933-y
    [16]
    Ramos-Marques E, Garcia-Mendivil L, Perez-Zabalza M, et al. Chronological and biological aging of the human left ventricular myocardium: analysis of microRNAs contribution. Aging Cell, 2021; 20(7): e13383.
    [17]
    Chen K, Wang S, Sun Q W, et al. Klotho deficiency causes heart aging via impairing the Nrf2-GR pathway. Circ Res, 2021; 128(4): 492-507. doi: 10.1161/CIRCRESAHA.120.317348
    [18]
    Wen D T, Zheng L, Li J X, et al. The activation of cardiac dSir2- related pathways mediates physical exercise resistance to heart aging in old Drosophila. Aging (Albany NY), 2019; 11(17): 7274-7293.
    [19]
    Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature, 2009; 458(7235): 223-227. doi: 10.1038/nature07672
    [20]
    Guttman M, Russell P, Ingolia NT, et al. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell, 2013; 154(1): 240-251. doi: 10.1016/j.cell.2013.06.009
    [21]
    Chen Y, Zhou X, Huang C, et al. LncRNA PART1 promotes cell proliferation and progression in non-small-cell lung cancer cells via sponging miR-17-5p. J Cell Biochem, 2020; 122(3-4): 315-325.
    [22]
    Chen H, Chen J. LncRNA SOX21-AS1 promotes the growth and invasiveness of osteosarcoma cells through miR-7-5p/IRS2 regulatory network. Arch Med Res, 2020; 52(3): 294-303.
    [23]
    Chen X J, An N. Long noncoding RNA ATB promotes ovarian cancer tumorigenesis by mediating histone H3 lysine 27 trimethylation through binding to EZH2. J Cell Mol Med, 2021; 25(1): 37-46. doi: 10.1111/jcmm.15329
    [24]
    Jae N, Heumuller A W, Fouani Y, et al. Long non-coding RNAs in vascular biology and disease. Vascul Pharmacol, 2019; 114(3): 13-22.
    [25]
    Xie Z, Xia W, Hou M. Long intergenic noncoding RNAp21 mediates cardiac senescence via the Wnt/betacatenin signaling pathway in doxorubicin-induced cardiotoxicity. Mol Med Rep, 2018; 17(2): 2695-2704.
    [26]
    Cabiati M, Sapio A, Salvadori C, et al. Evaluation of transcriptional levels of the natriuretic peptides, endothelin-1, adrenomedullin, their receptors and long non-coding RNAs in rat cardiac tissue as cardiovascular biomarkers of aging. Peptides, 2020; 123: 170173. doi: 10.1016/j.peptides.2019.170173
    [27]
    Abdelmohsen K, Panda A, Kang M J, et al. Senescence-associated lncRNAs: senescence-associated long noncoding RNAs. Aging Cell, 2013; 12(5): 890-900. doi: 10.1111/acel.12115
    [28]
    Lai C H, Chen A T, Burns A B, et al. RAMP2-AS1 regulates endothelial homeostasis and aging. Front Cell Dev Biol, 2021; 9: 635307. doi: 10.3389/fcell.2021.635307
    [29]
    Zheng Y, Liu T, Li Q, et al. Integrated analysis of long non-coding RNAs (lncRNAs) and mRNA expression profiles identifies lncRNA PRKG1-AS1 playing important roles in skeletal muscle aging. Aging (Albany NY), 2021; 13: 15044-15060.
    [30]
    Hao K, Lei W, Wu H, et al. LncRNA-Safe contributes to cardiac fibrosis through Safe-Sfrp2-HuR complex in mouse myocardial infarction. Theranostics, 2019; 9(24): 7282-7297. doi: 10.7150/thno.33920
    [31]
    Cai B, Ma W, Wang X, et al. Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ, 2020; 27(7): 2158-2175. doi: 10.1038/s41418-020-0492-5
    [32]
    Wang J, Zhang S, Li X, et al. LncRNA SNHG7 promotes cardiac remodeling by upregulating ROCK1 via sponging miR-34-5p. Aging (Albany NY), 2020; 12(11): 10441-10456.
    [33]
    Chen J, Zou Q, Lv D, et al. Comprehensive transcriptional landscape of porcine cardiac and skeletal muscles reveals differences of aging. Oncotarget, 2018; 9(2): 1524-1541. doi: 10.18632/oncotarget.23290
    [34]
    Greenig M, Melville A, Huntley D, et al. Cross-sectional transcriptional analysis of the aging murine heart. Front Mol Biosci, 2020; 7: 565530. doi: 10.3389/fmolb.2020.565530
    [35]
    Yu W, Mengersen K, Wang X, et al. Daily average temperature and mortality among the elderly: a meta-analysis and systematic review of epidemiological evidence. Int J Biometeorol, 2012; 56(4): 569-581. doi: 10.1007/s00484-011-0497-3
    [36]
    von Klot S, Zanobetti A, Schwartz J. Influenza epidemics, seasonality, and the effects of cold weather on cardiac mortality. Environ Health, 2012; 11(1): 74. doi: 10.1186/1476-069X-11-74
    [37]
    Cong P, Liu Y, Liu N, et al. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord, 2018; 18(1): 36. doi: 10.1186/s12872-018-0748-x
    [38]
    Dowery R, Benhamou D, Benchetrit E, et al. Peripheral B-cells repress B-cell regeneration in aging through a TNFalpha/IGFBP-1/IGF1 immune-endocrine axis. Blood, 2021, 138(19): 1817-1829. doi: 10.1182/blood.2021012428
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (74) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return