Citation: | Chang'e Liu, Yingyue Liu, Xiaoyang Hong, Zhichun Feng. Study of the incidence of hyperuricemia in young males' population with rapid entry into the plateau of 4 500m[J]. Frigid Zone Medicine, 2022, 2(1): 41-44. doi: 10.2478/fzm-2022-0005 |
[1] |
Multidisciplinary Expert Task Force on Hyperuricemia and Related Diseases. Chinese multidisciplinary expert consensus on the diagnosis and treatment of hyperuricemia and related diseases. Chin Med J (Engl), 2017; 130(20): 2473-2488. doi: 10.4103/0366-6999.216416
|
[2] |
Evans P L, Prior J A, Belcher J, et al. Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res Ther, 2018; 20(1): 136. doi: 10.1186/s13075-018-1612-1
|
[3] |
Thottam G E, Krasnokutsky S, Pillinger M H. Gout and metabolic syndrome: a tangled web. Curr Rheumatol Rep, 2017; 19(10): 60. doi: 10.1007/s11926-017-0688-y
|
[4] |
Kuo C F, Yu K H, Luo S F, et al. Gout and risk of non-alcoholic fatty liver disease. Scand J Rheumatol, 2010; 39(6): 466-471. doi: 10.3109/03009741003742797
|
[5] |
Roughley M J, Belcher J, Mallen C D, et al. Gout and risk of chronic kidney disease and nephrolithiasis: meta-analysis of observational studies. Arthritis Res Ther, 2015; 17(1): 90. doi: 10.1186/s13075-015-0610-9
|
[6] |
Abeles A M, Pillinger M H. Gout and cardiovascular disease: crystallized confusion. Curr Opin Rheumatol, 2019; 31(2): 118-124. doi: 10.1097/BOR.0000000000000585
|
[7] |
Tung Y C, Lee S S, Tsai W C, et al. Association between gout and incident type 2 diabetes mellitus: a retrospective cohort study. Am J Med, 2016; 129(11): 1219. e17-1219. e25.
|
[8] |
Pontremoli R. The role of urate-lowering treatment on cardiovascular and renal disease: evidence from CARES, FAST, ALL-HEART, and FEATHER studies. Curr Med Res Opin, 2017; 33(Sup3): 27-32. doi: 10.1080/03007995.2017.1378523
|
[9] |
Qin T, Zhou X, Wang J, et al. Hyperuricemia and the prognosis of hypertensive patients: a systematic review and meta-analysis. J Clin Hypertens (Greenwich), 2016; 18(12): 1268-1278. doi: 10.1111/jch.12855
|
[10] |
Rafiullah M, Siddiqui K, Al-Rubeaan K. Association between serum uric acid levels and metabolic markers in patients with type 2 diabetes from a community with high diabetes prevalence. Int J Clin Pract, 2020; 74(4): e13466.
|
[11] |
Nielsen S M, Bartels E M, Henriksen M, et al. Weight loss for overweight and obese individuals with gout: a systematic review of longitudinal studies. Ann Rheum Dis, 2017; 76(11): 1870-1882. . doi: 10.1136/annrheumdis-2017-211472
|
[12] |
Li P, Huang J, Tian H J, et al. Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Exp Hematol, 2011; 39(1): 37-46. doi: 10.1016/j.exphem.2010.10.006
|
[13] |
Glantzounis G K, Tsimoyiannis E C, Kappas A M, et al. Uric acid and oxidative stress. Curr Pharm Des, 2005; 11(32): 4145-4151. doi: 10.2174/138161205774913255
|
[14] |
Ullah M M, Basile D P. Role of renal hypoxia in the progression from acute kidney injury to chronic kidney disease. Semin Nephrol, 2019; 39(6): 567-580. doi: 10.1016/j.semnephrol.2019.10.006
|
[15] |
D'Alessandro A, Xia Y. Erythrocyte adaptive metabolic reprogramming under physiological and pathological hypoxia. Curr Opin Hematol, 2020; 27(3): 155-162. doi: 10.1097/MOH.0000000000000574
|
[16] |
Harada M, Fujii K, Yamada Y, et al. Relationship between serum uric acid level and vascular injury markers in hemodialysis patients. Int Urol Nephrol, 2020; 52(8): 1581-1591. doi: 10.1007/s11255-020-02531-w
|
[17] |
Li P, Huang J, Tian H J, et al. Regulation of bone marrow hematopoietic stem cell is involved in high-altitude erythrocytosis. Exp Hematol, 2011; 39(1): 37-46. doi: 10.1016/j.exphem.2010.10.006
|
[18] |
Tzounakas V L, Karadimas D G, Anastasiadi A T, et al. Donor-specific individuality of red blood cell performance during storage is partly a function of serum uric acid levels. Transfusion, 2018; 58(1): 34-40. doi: 10.1111/trf.14379
|
[19] |
Mohanty J G, Nagababu E, Rifkind J M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol, 2014; 5: 84.
|
[20] |
Neimark E, LeLeiko N S. Antioxidant effect of bilirubin and pediatric nonalcoholic fatty liver disease. Pediatrics, 2009; 124(6): e1240-e1241. doi: 10.1542/peds.2009-2487
|
[21] |
Song K, Zhang Y, Ga Q, et al. High-altitude chronic hypoxia ameliorates obesity-induced non-alcoholic fatty liver disease in mice by regulating mitochondrial and AMPK signaling. Life Sci, 2020; 252: 117633. doi: 10.1016/j.lfs.2020.117633
|