| Citation: | Wenqian Jiang, Madi Guo, Xu Wang, Xin Liu, Yong Zhang. Targeting the E3 ligase RLIM to regulate VSMC phenotypic switching in vascular aging: implications for cold stress[J]. Frigid Zone Medicine, 2025, 5(3): 147-156. doi: 10.1515/fzm-2025-0018 |
| [1] |
Song X, Wang S, Hu Y, et al. Impact of ambient temperature on morbidity and mortality: An overview of reviews. Sci Total Environ, 2017; 586: 241-254. doi: 10.1016/j.scitotenv.2017.01.212
|
| [2] |
Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of air temperature on climate-sensitive mortality and morbidity outcomes in the elderly; a systematic review and meta-analysis of epidemiological evidence. EBioMedicine, 2016; 6: 258-268. doi: 10.1016/j.ebiom.2016.02.034
|
| [3] |
Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges. Am J Physiol Heart Circ Physiol, 2015; 309(11): H1793-H1812. doi: 10.1152/ajpheart.00199.2015
|
| [4] |
Fares A. Winter cardiovascular diseases phenomenon. N Am J Med Sci, 2013; 5(4): 266-279. doi: 10.4103/1947-2714.110430
|
| [5] |
Shepherd J T, Rusch N J, Vanhoutte P M. Effect of cold on the blood vessel wall. Gen Pharmacol, 1983; 14(1): 61-64. doi: 10.1016/0306-3623(83)90064-2
|
| [6] |
Hess K L, Wilson T E, Sauder C L, et al. Aging affects the cardiovascular responses to cold stress in humans. J Appl Physiol (1985), 2009; 107(4): 1076-1082. doi: 10.1152/japplphysiol.00605.2009
|
| [7] |
Dong M, Yang X, Lim S, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab, 2013; 18(1): 118-129. doi: 10.1016/j.cmet.2013.06.003
|
| [8] |
van Bergen P, Fregly M J, Rossi F, et al. The effect of intermittent exposure to cold on the development of hypertension in the rat. Am J Hypertens, 1992; 5(8): 548-555. doi: 10.1093/ajh/5.8.548
|
| [9] |
Fu S, Cao Y, Li Y. [Epidemiological study of hypertension in Heilongjiang province]. Zhonghua Nei Ke Za Zhi, 2022; 41: 114-116.
|
| [10] |
Kontis V, Bennett J E, Mathers C D, et al. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet, 2017; 389(10076): 1323-1335. doi: 10.1016/S0140-6736(16)32381-9
|
| [11] |
Department of Economic and Social Affairs. Leaving no one behind in an ageing world (World Social Report 2023). New York: World Population Ageing, 2019.
|
| [12] |
Yazdanyar A, Newman A B. The burden of cardiovascular disease in the elderly: morbidity, mortality, and costs. Clin Geriatr Med, 2009; 25(4): 563-vii. doi: 10.1016/j.cger.2009.07.007
|
| [13] |
Fajemiroye J O, da Cunha L C, Saavedra-Rodríguez R, et al. Aging-induced biological changes and cardiovascular diseases. Biomed Res Int, 2018; 2018: 7156435. doi: 10.1155/2018/7156435
|
| [14] |
Laurent S. Defining vascular aging and cardiovascular risk. J Hypertens, 2012; 30 Suppl: S3-S8. doi: 10.1097/HJH.0b013e328353e501
|
| [15] |
Ungvari Z, Tarantini S, Kiss T, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol, 2018; 15(9): 555-565. doi: 10.1038/s41569-018-0030-z
|
| [16] |
Lacolley P, Regnault V, Nicoletti A, et al. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res, 2012; 95(2): 194-204. doi: 10.1093/cvr/cvs135
|
| [17] |
Abdellatif M, Sedej S, Carmona-Gutierrez D, et al. Autophagy in cardiovascular aging. Circ Res, 2018; 123(7): 803-824. doi: 10.1161/CIRCRESAHA.118.312208
|
| [18] |
Wang J C, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res, 2012; 111(2): 245-259. doi: 10.1161/CIRCRESAHA.111.261388
|
| [19] |
Mian O, Santi N, Boodhwani M, et al. Arterial age and early vascular aging, but not chronological age, are associated with faster thoracic aortic aneurysm growth. J Am Heart Assoc, 2023; 12(16): e029466. doi: 10.1161/JAHA.122.029466
|
| [20] |
Matsumoto T, Watanabe S, Ando M, et al. Diabetes and age-related differences in vascular function of renal artery: possible involvement of endoplasmic reticulum stress. Rejuvenation Res, 2016; 19(1): 41-52. doi: 10.1089/rej.2015.1662
|
| [21] |
Lacolley P, Regnault V, Avolio A P. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res, 2018; 114(4): 513528. doi: 10.1093/cvr/cvy009
|
| [22] |
Owens G K, Kumar M S, Wamhoff B R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004; 84(3): 767-801. doi: 10.1152/physrev.00041.2003
|
| [23] |
Monk B A, George S J. The Effect of ageing on vascular smooth muscle cell behaviour--a mini-review. Gerontology, 2015; 61(5): 416-426. doi: 10.1159/000368576
|
| [24] |
Wang L, Wang M, Niu H, et al. Cholesterol-induced HRD1 reduction accelerates vascular smooth muscle cell senescence via stimulation of endoplasmic reticulum stress-induced reactive oxygen species. J Mol Cell Cardiol, 2024; 187: 51-64. doi: 10.1016/j.yjmcc.2023.12.007
|
| [25] |
Miao S B, Xie X L, Yin Y J, et al. Accumulation of smooth muscle 22α protein accelerates senescence of vascular smooth muscle cells via stabilization of p53 in vitro and in vivo. Arterioscler Thromb Vasc Biol, 2017; 37(10): 1849-1859. doi: 10.1161/ATVBAHA.117.309378
|
| [26] |
Wang F, Bach I. Rlim/Rnf12, Rex1, and X chromosome inactivation. Front Cell Dev Biol, 2019; 7: 258. doi: 10.3389/fcell.2019.00258
|
| [27] |
Huang Y, Nie M, Li C, et al. RLIM suppresses hepatocellular carcinogenesis by up-regulating p15 and p21. Oncotarget, 2017; 8(47): 83075-83087. doi: 10.18632/oncotarget.20904
|
| [28] |
Gao K, Wang C, Jin X, et al. RNF12 promotes p53-dependent cell growth suppression and apoptosis by targeting MDM2 for destruction. Cancer Lett, 2016; 375(1): 133-141. doi: 10.1016/j.canlet.2016.02.013
|
| [29] |
Gao R, Wang L, Cai H, et al. E3 ubiquitin ligase RLIM negatively regulates c-Myc transcriptional activity and restrains cell proliferation. PLoS One, 2016; 11(9): e0164086. doi: 10.1371/journal.pone.0164086
|
| [30] |
Her Y R, Chung I K. Ubiquitin ligase RLIM modulates telomere length homeostasis through a proteolysis of TRF1. J Biol Chem, 2009; 284(13): 8557-8566. doi: 10.1074/jbc.M806702200
|
| [31] |
Zhang L, Huang H, Zhou F, et al. RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell, 2012; 46(5): 650-661 doi: 10.1016/j.molcel.2012.04.003
|
| [32] |
Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature, 2020; 583(7817): 590-595. doi: 10.1038/s41586-020-2496-1
|
| [33] |
Frismantiene A, Philippova M, Erne P, et al. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal, 2018; 52: 48-64. doi: 10.1016/j.cellsig.2018.08.019
|
| [34] |
Zhang M J, Zhou Y, Chen L, et al. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol, 2016; 145(2): 119-130. doi: 10.1007/s00418-015-1386-3
|
| [35] |
Chi C, Li D J, Jiang Y J, et al. Vascular smooth muscle cell senescence and age-related diseases: State of the art. Biochim Biophys Acta Mol Basis Dis, 2019; 1865(7): 1810-1821. doi: 10.1016/j.bbadis.2018.08.015
|
| [36] |
Uryga A K, Bennett M R. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol, 2016; 594(8): 2115-2124. doi: 10.1113/JP270923
|
| [37] |
Ungvari Z, Tarantini S, Donato A J, et al. Mechanisms of vascular aging. Circ Res, 2018; 123(7): 849-867. doi: 10.1161/CIRCRESAHA.118.311378
|
| [38] |
Callis J. The ubiquitination machinery of the ubiquitin system. Arabidopsis Book, 2014; 12: e0174. doi: 10.1199/tab.0174
|
| [39] |
Pupo A, Fernández A, Low S H, et al. AAV vectors: the Rubik's cube of human gene therapy. Mol Ther, 2022; 30(12): 3515-3541. doi: 10.1016/j.ymthe.2022.09.015
|