| Citation: | Ruonan Zhang, Li Zhang, Yuqing Jiang, Zhiwei Zhao, Guanyu Zhang, Yongqiang Zhang, Shuai Wu, Xi Li, Danfeng Yang. Cordycepin ameliorates brown adipose tissue whitening induced by long-term continuous light exposure via the AMPK/PGC-1α/UCP1 signaling pathway[J]. Frigid Zone Medicine, 2025, 5(3): 129-140. doi: 10.1515/fzm-2025-0016 |
| [1] |
Kolomeichuk SN, Korostovtseva LS, Morozov A V, et al. Comparative analysis of sleep hygiene and patterns among adolescents in two Russian Arctic regions: a pilot study. Children (Basel), 2024; 11(3): 279.
|
| [2] |
Thuany M, Viljoen C, Gomes T N, et al. Antarctic expeditions: a systematic review of the physiological, nutritional, body composition and psychological responses to treks across the continental ice. Sports Med, 2024; 55(5): 1145-1163.
|
| [3] |
Maciejczyk M, Arazny A, Opyrchal M. Changes in aerobic performance, body composition, and physical activity in polar explorers during a year-long stay at the polar station in the Arctic. Int J Biometeorol, 2017; 61(4): 669-675. doi: 10.1007/s00484-016-1244-6
|
| [4] |
Xu Y J, Xie Z Y, Gong Y C, et al. The association between outdoor light at night exposure and adult obesity in Northeastern China. Int J Environ Health Res, 2024; 34(2): 708-718. doi: 10.1080/09603123.2023.2165046
|
| [5] |
Sakers A, De Siqueira M K, Seale P, et al. Adipose-tissue plasticity in health and disease. Cell, 2022; 185(3): 419-446. doi: 10.1016/j.cell.2021.12.016
|
| [6] |
Cedikova M, Kripnerová M, Dvorakova J, et al. Mitochondria in white, brown, and beige adipocytes. Stem Cells Int, 2016; 2016: 6067349. doi: 10.1155/2016/6067349
|
| [7] |
Lee P, Bova R, Schofield L, et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metabolism, 2016; 23(4): 602-609. doi: 10.1016/j.cmet.2016.02.007
|
| [8] |
Kuipers E N, Held N M, In Het Panhuis W, et al. A single day of high-fat diet feeding induces lipid accumulation and insulin resistance in brown adipose tissue in mice. Am J Physiol Endocrinol Metab, 2019; 317(5): E820-E830. doi: 10.1152/ajpendo.00123.2019
|
| [9] |
Pan X X, Yao K L, Yang Y F, et al. Senescent T cell induces brown adipose tissue "whitening" via secreting IFN-gamma. Front Cell Dev Biol, 2021; 9: 637424. doi: 10.3389/fcell.2021.637424
|
| [10] |
Hao L, Khan M S H, Zu Y, et al. Thermoneutrality inhibits thermogenic markers and exacerbates nonalcoholic fatty liver disease in mice. Int J Mol Sci, 2024; 25(15): 8482. doi: 10.3390/ijms25158482
|
| [11] |
Bolin A P, De Fatima Silva F, Salgueiro R B, et al. Glucocorticoid modulates oxidative and thermogenic function of rat brown adipose tissue and human brown adipocytes. J Cell Physiol, 2024; 239(9): 1-12.
|
| [12] |
Kooijman S, Van Den Berg R, Ramkisoensing A, et al. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity. Proc Natl Acad Sci U S A, 2015; 112(21): 6748-6753. doi: 10.1073/pnas.1504239112
|
| [13] |
Li X, Xiong X, Yi C. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods, 2016; 14(1): 23-31.
|
| [14] |
Du K, Chen G H, Bai X, et al. Dynamics of transcriptome and chromatin accessibility revealed sequential regulation of potential transcription factors during the brown adipose tissue whitening in rabbits. Front Cell Dev Biol, 2022; 10: 981661. doi: 10.3389/fcell.2022.981661
|
| [15] |
Lyu J, Liu Y, Liu F, et al. Therapeutic effect and mechanisms of traditional Chinese medicine compound (Qilong capsule) in the treatment of ischemic stroke. Phytomedicine, 2024; 132: 155781. doi: 10.1016/j.phymed.2024.155781
|
| [16] |
Huang W, Yu P, Zhao X, et al. CMAP prediction and experimental validation of Forskolin as a podocyte protective and anti-proteinuric drug for nephrotoxic serum-treated mice. Biochem Pharmacol, 2025; 232: 116727. doi: 10.1016/j.bcp.2024.116727
|
| [17] |
Markina N O, Matveev G A, Zasypkin G G, et al. Role of brown adipose tissue in metabolic health and efficacy of drug treatment for obesity. J Clin Med, 2024; 13(14): 4151. doi: 10.3390/jcm13144151
|
| [18] |
Carpentier A C, Blondin D P, Virtanen K A, et al. Brown Adipose Tissue Energy Metabolism in Humans. Front Endocrinol (Lausanne), 2018; 9: 447. doi: 10.3389/fendo.2018.00447
|
| [19] |
Li Y, Cao S, Li Y. Mechanistic study of heat shock protein 60-mediated apoptosis in DF-1 cells. Poult Sci, 2024; 103(6): 103619. doi: 10.1016/j.psj.2024.103619
|
| [20] |
Zininga T, Ramatsui L, Shonhai A. Heat shock proteins as immunomodulants. Molecules, 2018; 23(11): 2846. doi: 10.3390/molecules23112846
|
| [21] |
Wong S H D, Yin B, Li Z, et al. Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling. Sci Adv, 2023; 9(27): 9593. doi: 10.1126/sciadv.adg9593
|
| [22] |
Day E A, Townsend L K, Rehal S, et al. Macrophage AMPK β1 activation by PF-06409577 reduces the inflammatory response, cholesterol synthesis, and atherosclerosis in mice. iScience, 2023; 26(11): 108269. doi: 10.1016/j.isci.2023.108269
|
| [23] |
Cheng Y, Mei X, Shao W, et al. Nobiletin alleviates macrophage M2 polarization by activating AMPK-mTOR-mediated autophagy in pulmonary fibrosis mice. Int Immunopharmacol, 2024; 139: 112792. doi: 10.1016/j.intimp.2024.112792
|
| [24] |
Shen B, Wen Y, Li S, et al. Paeonol ameliorates hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways. Phytomedicine, 2024; 132: 155839. doi: 10.1016/j.phymed.2024.155839
|
| [25] |
Wu F, Lu F, Dong H, et al. Oxyberberine inhibits hepatic gluconeogenesis via AMPK-mediated suppression of FoxO1 and CRTC2 signaling axes. Phytother Res, 2024, Online ahead of print.
|
| [26] |
Sagliocchi S, Schiano E, Acampora L, et al. AbaComplex enhances mitochondrial biogenesis and adipose tissue browning: implications for obesity and glucose regulation. Foods, 2024; 14(1): 48. doi: 10.3390/foods14010048
|
| [27] |
Tang X, Shi Y, Chen Y, et al. Tetrahydroberberrubine exhibits preventive effect on obesity by activating PGC1α-mediated thermogenesis in white and brown adipose tissue. Biochemical pharmacology, 2024; 226: 116381. doi: 10.1016/j.bcp.2024.116381
|
| [28] |
Zhang Y Q, Zhang Z Z, Zhang Y W, et al. Baicalin promotes the activation of brown and white adipose tissue through AMPK/PGC1α pathway. Eur J Pharmacol, 2022; 922: 174913. doi: 10.1016/j.ejphar.2022.174913
|
| [29] |
Wang H, An Y, Rajput S A, et al. Resveratrol and (-)-epigallocatechin-3-gallate regulate lipid metabolism by activating the AMPK pathway in hepatocytes. Biology, 2024; 13(6): 368. doi: 10.3390/biology13060368
|
| [30] |
Lan T, Yu Y, Zhang J, et al. Cordycepin ameliorates nonalcoholic steatohepatitis by activation of the AMP-activated protein kinase signaling pathway. Hepatology, 2021; 74(2): 686-703. doi: 10.1002/hep.31749
|
| [31] |
Shen B, Wang Y, Cheng J, et al. Pterostilbene alleviated NAFLD via AMPK/mTOR signaling pathways and autophagy by promoting Nrf2. Phytomedicine: international journal of phytotherapy and phytopharmacology, 2023; 109: 154561. doi: 10.1016/j.phymed.2022.154561
|
| [32] |
Gómez-garcía I, Fernández-quintela A, Portillo M P, et al. Changes in brown adipose tissue induced by resveratrol and its analogue pterostilbene in rats fed with a high-fat high-fructose diet. J Physiol Biochem, 2024; 80(3): 627-637. doi: 10.1007/s13105-023-00985-x
|
| [33] |
Yan H, Shao M, Lin X, et al. Resveratrol stimulates brown of white adipose via regulating ERK/DRP1-mediated mitochondrial fission and improves systemic glucose homeostasis. Endocrine, 2025; 87(1): 144-158.
|
| [34] |
Nagao K, Jinnouchi T, Kai S, et al. Pterostilbene, a dimethylated analog of resveratrol, promotes energy metabolism in obese rats. J Nutr Biochem, 2017; 43: 151-155. doi: 10.1016/j.jnutbio.2017.02.009
|
| [35] |
Xu H, Wu B, Wang X, et al. Cordycepin regulates body weight by inhibiting lipid droplet formation, promoting lipolysis and recruiting beige adipocytes. J Pharm Pharmacol, 2019; 71(9): 1429-1439. doi: 10.1111/jphp.13127
|
| [36] |
Qi G, Zhou Y, Zhang X, et al. Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway. Acta Pharm Sin B, 2019; 9(1): 135-143. doi: 10.1016/j.apsb.2018.10.004
|
| [37] |
Meng J J, Shen J W, Li G, et al. Light modulates glucose metabolism by a retina-hypothalamus-brown adipose tissue axis. Cell, 2023; 186(2): 398-412. e17. doi: 10.1016/j.cell.2022.12.024
|
| [38] |
Rao F, Xue T. Circadian-independent light regulation of mammalian metabolism. Nat Metab, 2024; 6(6): 1000-1007. doi: 10.1038/s42255-024-01051-6
|
fzm-5-3-129_ESM.docx
|
|