Citation: | Xinyue Wang, Hengxin Han, Yi Xu. Cryopreservation as a versatile strategy for the construction and application of organoids[J]. Frigid Zone Medicine, 2025, 5(2): 119-123. doi: 10.1515/fzm-2025-0013 |
[1] |
Clevers H. Modeling development and disease with organoids. Cell, 2016; 165(7): 1586-1597. doi: 10.1016/j.cell.2016.05.082
|
[2] |
Hofer M, Lutolf M P. Engineering organoids. Nat Rev Mater, 2021; 6(5): 402-420. doi: 10.1038/s41578-021-00279-y
|
[3] |
Zhao Z, Chen X, Dowbaj A M, et al. Organoids. Nat Rev Methods Primers, 2022; 2(1): 94. doi: 10.1038/s43586-022-00174-y
|
[4] |
Nishinakamura R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol, 2019; 15(10): 613-624. doi: 10.1038/s41581-019-0176-x
|
[5] |
Xue W, Li H, Xu J, et al. Effective cryopreservation of human brain tissue and neural organoids. Cell Rep Methods, 2024; 4(5): 100777. doi: 10.1016/j.crmeth.2024.100777
|
[6] |
Murray K A, Gibson M I. Chemical approaches to cryopreservation. Nat Rev Chem, 2022; 6(8): 579-593. doi: 10.1038/s41570-022-00407-4
|
[7] |
Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci, 2021; 8(6): 2002425. doi: 10.1002/advs.202002425
|
[8] |
Palechor-Ceron N, Krawczyk E, Dakic A, et al. Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells, 2019; 8 (11): 1327. http://www.xueshufan.com/publication/2981934952
|
[9] |
Mashouf P, Tabibzadeh N, Kuraoka S, et al. Cryopreservation of human kidney organoids. Cell Mol Life Sci, 2024; 81(1): 306. doi: 10.1007/s00018-024-05352-7
|
[10] |
Lee S G, Kim J, Seok J, et al. Development of heart organoid cryopreservation method through Fe3O4 nanoparticles based nanowarming system. Biotechnol J, 2024; 19(1): 2300311. doi: 10.1002/biot.202300311
|
[11] |
Kodali M C, Antone J, Alsop E, et al. Cryopreservation of cerebrospinal fluid cells preserves the transcriptional landscape for single-cell analysis. J Neuroinflammation, 2024; 21(1): 71. doi: 10.1186/s12974-024-03047-1
|
[12] |
Palechor-Ceron N, Krawczyk E, Dakic A, et al. Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells, 2019; 8 (11): 1327. doi: 10.3390/cells8111327
|
[13] |
Tsai Y H, Czerwinski M, Wu A, et al. A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture. Cell Mol Gastroenterol Hepatol, 2018; 6(2): 218-222. doi: 10.1016/j.jcmgh.2018.04.008
|
[14] |
Han H, Zhan T, Guo N, et al. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J, 2024; 19(2): 2300543. doi: 10.1002/biot.202300543
|
[15] |
Liu X, Krawczyk E, Suprynowicz F A, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc, 2017; 12(2): 439-445. doi: 10.1038/nprot.2016.174
|
[16] |
Slostad J, Masood A, Swoboda A T, et al. Towards the clinical validity of tumor organoid drug screens: Establishing a framework for organoid disease models. J Clin Oncol, 2021; e15037. doi: 10.1200/JCO.2021.39.15_suppl.e15037
|
[17] |
Cui M, Liu L, Chen L, et al. New cryoprotectant loading method for cell droplet vitrification with continuous evaporation. Langmuir, 2022; 38(46): 14129-14139. doi: 10.1021/acs.langmuir.2c02082
|
[18] |
Zhan T, Niu W, Cui M, et al. Quantitative assessment of intracellular/extracellular dimethyl sulfoxide concentrations during freezing with low-temperature confocal Raman micro-spectroscopy. Analyst, 2023; 148(1): 47-60. doi: 10.1039/D2AN01288J
|
[19] |
Cui M, Zhan T, Yang J, et al. Droplet generation, vitrification, and warming for cell cryopreservation: a review. ACS Biomaterials Science & Engineering, 2023; 9(3): 1151-1163. doi: 10.1021/acsbiomaterials.2c01087
|
[20] |
He W, Zhan T, Han H, et al. Optimization of deep eutectic solvents enables green and efficient cryopreservation. Langmuir, 2023; 40(1): 624-637. doi: 10.1021/acs.langmuir.3c02808
|
[21] |
Massie I, Selden C, Hodgson H, et al. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods, 2014; 20(9): 693-702. doi: 10.1089/ten.tec.2013.0571
|
[22] |
Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol, 2022; 40(1): 93-106. doi: 10.1016/j.tibtech.2021.06.004
|
[23] |
Huang H, He X, Yarmush M L. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng, 2021; 5(8): 793-804. doi: 10.1038/s41551-021-00784-z
|
[24] |
Han H, Zhan T, Cui M, et al. Investigation of rapid rewarming chips for cryopreservation by joule heating. Langmuir, 2023; 39(31): 1104811062. doi: 10.1021/acs.langmuir.3c01364
|
[25] |
Zuo J, Cao M, Han H, et al. Optimization of annealing and metal films radiofrequency heating procedures for vitrified umbilical arteries. Langmuir, 2024; 40(2): 1164-1176. doi: 10.1021/acs.langmuir.3c02125
|