Citation: | Qing Zuo, Cai Gao. Sugars on dehydrated phospholipid bilayer: A mini review on its protective mechanisms[J]. Frigid Zone Medicine, 2025, 5(2): 108-112. doi: 10.1515/fzm-2025-0011 |
[1] |
Crowe J H, Hoekstra F A, Crowe L M. Anhydrobiosis. Annu Rev Physiol, 1992; 54(1): 579-599. doi: 10.1146/annurev.ph.54.030192.003051
|
[2] |
Golovina E A, Golovin A V, Hoekstra F A, et al. Water replacement hypothesis in atomic detail-factors determining the structure of dehydrated bilayer stacks. Biophys J, 2009; 97(2): 490-499. doi: 10.1016/j.bpj.2009.05.007
|
[3] |
Crowe J H, Crowe L M, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science, 1984; 223(4637): 701-703. doi: 10.1126/science.223.4637.701
|
[4] |
Lee C, Das Gupta S, Mattai J, et al. Characterization of the L. lambda. phase in trehalose-stabilized dry membranes by solid-state NMR and X-ray diffraction. Biochemistry, 1989; 28(12): 5000-5009. doi: 10.1021/bi00438a015
|
[5] |
Tsvetkova N M, Phillips B L, Crowe L M, et al. Effect of sugars on headgroup mobility in freeze-dried dipalmitoylphosphatidylcholine bilayers: solid-state 31P NMR and FTIR studies. Biophys J, 1998; 75(6): 2947-2955. doi: 10.1016/S0006-3495(98)77736-7
|
[6] |
Lambruschini C, Relini A, Ridi A, et al. Trehalose interacts with phospholipid polar heads in Langmuir monolayers. Langmuir, 2000; 16(12): 5467-5470. doi: 10.1021/la991641e
|
[7] |
Golovina E A, Golovin A, Hoekstra F A, et al. Water replacement hypothesis in atomic details: efect of trehalose on the structure of single dehydrated POPC bilayers. Langmuir, 2010; 26(13): 11118-11126. doi: 10.1021/la100891x
|
[8] |
Liu J, Chen C, Li W. The influence of water and trehalose content on the stabilization of POPC membrane upon rapid heating studied by molecular simulations. Fluid Phase Equilib, 2018; 474: 100-109. doi: 10.1016/j.fluid.2018.07.006
|
[9] |
Rand R P, Parsegian V A. Hydration forces between phospholipid bilayers. Biochim Biophys Acta Rev Biomembr, 1989; 988(3): 351-376. doi: 10.1016/0304-4157(89)90010-5
|
[10] |
Koster KL, Maddocks K J, Bryant G. Exclusion of maltodextrins from phosphatidylcholine multilayers during dehydration: effects on membrane phase behaviour. Eur Biophys J, 2003; 32(2): 96-105. doi: 10.1007/s00249-003-0277-z
|
[11] |
Kent B, Hunt T, Darwish T A, et al. Localization of trehalose in partially hydrated DOPC bilayers: insights into cryoprotective mechanisms. J R Soc Interface, 2014; 11(95): 20140069. doi: 10.1098/rsif.2014.0069
|
[12] |
Kent B, Hauss T, Deme B, et al. Direct comparison of disaccharide interaction with lipid membranes at reduced hydrations. Langmuir, 2015; 31(33): 9134-9141. doi: 10.1021/acs.langmuir.5b02127
|
[13] |
Andersen H D, Wang C, Arleth L, et al. Reconciliation of opposing views on membrane-sugar interactions. Proc Natl Acad Sci U S A, 2011; 108(5): 1874-1878. doi: 10.1073/pnas.1012516108
|
[14] |
Stachura S S, Malajczuk C J, Mancera R L. Does sucrose change its mechanism of stabilization of lipid bilayers during desiccation? Influences of hydration and concentration. Langmuir, 2019; 35(47): 15389-15400. doi: 10.1021/acs.langmuir.9b03086
|
[15] |
Cao Y, Gao C, Yang L, et al. Molecular simulation on the interaction between trehalose and asymmetric lipid bilayer mimicking the membrane of human red blood cells. Cryobiology, 2024; 115: 104898. doi: 10.1016/j.cryobiol.2024.104898
|
[16] |
Pereira C S, Hunenberger P H. Interaction of the sugars trehalose, maltose and glucose with a phospholipid bilayer: a comparative molecular dynamics study. J Phys Chem B, 2006; 110(31): 15572-15581. doi: 10.1021/jp060789l
|
[17] |
Pereira C S, Lins R D, Chandrasekhar I, et al. Interaction of the disaccharide trehalose with a phospholipid bilayer: a molecular dynamics study. Biophys J, 2004; 86(4): 2273-2285. doi: 10.1016/S0006-3495(04)74285-X
|
[18] |
Sun W Q, Leopold A C, Crowe L M, et al. Stability of dry liposomes in sugar glasses. Biophys J, 1996; 70(4): 1769-1776. doi: 10.1016/S0006-3495(96)79740-0
|
[19] |
Koster K L, Lei Y P, Anderson M, et al. Effects of vitrified and nonvitrified sugars on phosphatidylcholine fluid-to-gel phase transitions. Biophys J, 2000; 78(4): 1932-1946. doi: 10.1016/S0006-3495(00)76741-5
|
[20] |
Orlikowska-rzeznik H, Krok E, Domanska M, et al. Dehydration of lipid membranes drives redistribution of cholesterol between lateral domains. J Phys Chem Lett, 2024; 15(16): 4515-4522. doi: 10.1021/acs.jpclett.4c00332
|
[21] |
Maiti A, Daschakraborty S. Unraveling the molecular mechanisms of trehalose-mediated protection and stabilization of Escherichia coli lipid membrane during desiccation. J Phys Chem B, 2023; 127(20): 44964507. doi: 10.1021/acs.jpcb.3c01730
|