Citation: | Elnaz Zand, Gang Zhao. Antioxidant strategies to mitigate oxidative stress-induced cryodamage in oocytes[J]. Frigid Zone Medicine, 2025, 5(2): 81-90. doi: 10.1515/fzm-2025-0009 |
[1] |
Polge C, Smith A U, Parkes A S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949;164(4172): 666. doi: 10.1038/164666a0
|
[2] |
Whittingham D G, Leibo S P, Mazur P. Survival of mouse embryos frozen to -196 and -269 degrees C. Science, 1972; 178(4059): 411-414. doi: 10.1126/science.178.4059.411
|
[3] |
Cao B, Qin J, Pan B, et al. Oxidative stress and oocyte cryopreservation: recent advances in mitigation strategies involving antioxidants. Cells, 2022; 11(22): 3573. doi: 10.3390/cells11223573
|
[4] |
Rall W F, Fahy G M. Ice-free cryopreservation of mouse embryos at -196 degrees C by vitrification. Nature, 1985; 313(6003): 573-575. doi: 10.1038/313573a0
|
[5] |
Argyle C E, Harper J C, Davies M C. Oocyte cryopreservation: where are we now? Hum Reprod Update, 2016; 22(4): 440-449. doi: 10.1093/humupd/dmw007
|
[6] |
Hou Y P, Dai Y P, Zhu S E, et al. Bovine oocytes vitrified by the open pulled straw method and used for somatic cell cloning supported development to term. Theriogenology, 2005; 64(6): 1381-1391. doi: 10.1016/j.theriogenology.2005.03.012
|
[7] |
Abedpour N, Rajaei F. Vitrification by cryotop and the maturation, fertilization, and developmental rates of mouse oocytes. Iran Red Crescent Med J, 2015; 17(10): e18172. doi: 10.5812/ircmj.18172
|
[8] |
Ofosu J, Zhang Y, Liu Y, et al. Cryopreservation of mammalian gametes and embryos: implications of oxidative and nitrosative stress and potential role of antioxidants. Front Vet Sci, 2023; 10: 1174756. doi: 10.3389/fvets.2023.1174756
|
[9] |
Gardner D K, Truong T T. Antioxidants and Antifreeze Proteins in Cryopreservation/Vitrification//Cryopreservation in Assisted Reproduction: A Practitioner's Guide to Methods, Management and Organization. Cham: Springer International Publishing, 2024: 69-74.
|
[10] |
Yang J, Pan C, Zhang J, et al. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl Mater Interfaces, 2017; 9(49): 42516-42524. doi: 10.1021/acsami.7b12189
|
[11] |
Len J S, Koh W S D, Tan S X. The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep, 2019; 39(8): BSR20191601. doi: 10.1042/BSR20191601
|
[12] |
Mazur B. Rational points of abelian varieties with values in towers of number fields. Invent Math, 1972; 18(3): 183-266. doi: 10.1007/BF01389815
|
[13] |
Anisa-Annur S, Wan-Hafizah W J, Nor-Ashikin M N K, et al. Effect of coenzyme Q10 supplementation on post-vitrification mouse embryo development. Asian Pac J Reprod, 2024; 13(3): 126-132. doi: 10.4103/apjr.apjr_136_23
|
[14] |
Schieber M, Chandel N S. ROS function in redox signaling and oxidative stress. Curr Biol, 2014; 24(10): R453-R462. doi: 10.1016/j.cub.2014.03.034
|
[15] |
Liochev S I. Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med, 2013; 60: 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011
|
[16] |
Agarwal A, Aponte-Mellado A, Premkumar B J, et al. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol, 2012; 10: 1-31. doi: 10.1186/1477-7827-10-49
|
[17] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol, 2021; 236(12): 7966-7983. doi: 10.1002/jcp.30468
|
[18] |
Rehman R, Azhar A. Oxidative stress, mechanisms of subfertility, and reproductive disorders in females. Fundamental Principles of Oxidative Stress in Metabolism and Reproduction. London: Academic Press, 2024: 185-200. doi: 10.1016/B978-0-443-18807-7.00012-0
|
[19] |
Petry A, Görlach A. Regulation of NADPH oxidases by G protein-coupled receptors. Antioxid Redox Signal, 2019; 30(1): 74-94. doi: 10.1089/ars.2018.7525
|
[20] |
Keefe D, Liu L, Marquard K. Telomeres and meiosis in health and disease: telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci, 2007; 64(2): 139-143. doi: 10.1007/s00018-006-6466-z
|
[21] |
Lu W, Zhang Y, Liu D, et al. Telomeres - structure, function, and regulation. Exp Cell Res, 2013; 319(2): 133-141. doi: 10.1016/j.yexcr.2012.09.005
|
[22] |
Roig I, Liebe B, Egozcue J, et al. Female-specific features of recombinational double-stranded DNA repair in relation to synapsis and telomere dynamics in human oocytes. Chromosoma, 2004; 113(1): 22-33. doi: 10.1007/s00412-004-0290-8
|
[23] |
Scherthan H. Factors directing telomere dynamics in synaptic meiosis. Biochem Soc Trans, 2006; 34(4): 550-553. doi: 10.1042/BST0340550
|
[24] |
Valdes A M, Andrew T, Gardner J P, et al. Obesity, cigarette smoking, and telomere length in women. Lancet, 2005; 366(9486): 662664. doi: 10.1016/S0140-6736(05)66630-5
|
[25] |
Zhang J, Rane G, Dai X, et al. Ageing and the telomere connection: an intimate relationship with inflammation. Ageing Res Rev, 2016; 25: 55-69. doi: 10.1016/j.arr.2015.11.006
|
[26] |
Cattan V, Mercier N, Gardner J P, et al. Chronic oxidative stress induces a tissue-specific reduction in telomere length in CAST/Ei mice. Free Radic Biol Med, 2008; 44(8): 1592-1598. doi: 10.1016/j.freeradbiomed.2008.01.007
|
[27] |
Jurk D, Wilson C, Passos J, et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun, 2014; 2: 4172. doi: 10.1038/ncomms5172
|
[28] |
Zijlmans J M J, Martens U M, Poon S S, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci, 1997; 94(14): 7423-7428. doi: 10.1073/pnas.94.14.7423
|
[29] |
Bentov Y, Casper R F. The aging oocyte - can mitochondrial function be improved? Fertil Steril, 2013; 99(1): 18-22. doi: 10.1016/j.fertnstert.2012.11.031
|
[30] |
Zhang Q, Hao J X, Liu B W, et al. Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif, 2023; 56(3): e13372. doi: 10.1111/cpr.13372
|
[31] |
Goud A P, Goud P T, Diamond M P, et al. Reactive oxygen species and oocyte aging: role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radic Biol Med, 2008; 44(7): 1295-1304. doi: 10.1016/j.freeradbiomed.2007.11.014
|
[32] |
Keane J A, Ealy A D. An overview of reactive oxygen species damage occurring during in vitro bovine oocyte and embryo development and the efficacy of antioxidant use to limit these adverse effects. Animals, 2024; 14(2): 330. doi: 10.3390/ani14020330
|
[33] |
Hou X, Zhu S, Zhang H, et al. Mitofusin1 in oocyte is essential for female fertility. Redox Biol, 2019; 21: 101110. doi: 10.1016/j.redox.2019.101110
|
[34] |
Shigenaga M K, Hagen T M, Ames B N. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci, 1994; 91(23): 1077110778. doi: 10.1073/pnas.91.23.10771
|
[35] |
Matés J M, Pérez-Gómez C, De Castro I N. Antioxidant enzymes and human diseases. Clin Biochem, 1999; 32(8): 595-603. doi: 10.1016/S0009-9120(99)00075-2
|
[36] |
Alkadi H. A review on free radicals and antioxidants. Infect Disord Drug Targets, 2020; 20(1): 16-26. doi: 10.2174/1871526518666180628124323
|
[37] |
Mittag T, Parker R. Multiple modes of protein-protein interactions promote RNP granule assembly. J Mol Biol, 2018; 430(23): 4636-4649. doi: 10.1016/j.jmb.2018.08.005
|
[38] |
Putnam A, Thomas L, Seydoux G. RNA granules: functional compartments or incidental condensates? Genes Dev, 2023; 37(9-10): 354-376. doi: 10.1101/gad.350518.123
|
[39] |
Anderson P, Kedersha N. RNA granules. J Cell Biol, 2006; 172(6): 803-808. doi: 10.1083/jcb.200512082
|
[40] |
Cadena Sandoval M, Heberle A M, Rehbein U, et al. mTORC1 crosstalk with stress granules in aging and age-related diseases. Front aging, 2021; 2: 761333. doi: 10.3389/fragi.2021.761333
|
[41] |
Standart N, Minshall N. Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans, 2008; 36(4): 671-676. doi: 10.1042/BST0360671
|
[42] |
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol, 2024; 154(Pt B): 88-98. doi: 10.1016/j.semcdb.2023.03.003
|
[43] |
Yang W H, Bloch D B. Probing the mRNA processing body using protein macroarrays and "autoantigenomics". RNA, 2007; 13(5): 704712. doi: 10.1261/rna.411907
|
[44] |
Adjibade P, Mazroui R. Stress granules: stress-induced cytoplasmic mRNPs compartments linked to mRNA translational regulatory pathways. Front RNA Res, 2023; 1: 1226610. doi: 10.3389/frnar.2023.1226610
|
[45] |
Somfai T, Haraguchi S, Dang-Nguyen T Q, et al. Vitrification of porcine immature oocytes and zygotes results in different levels of DNA damage which reflects developmental competence to the blastocyst stage. Plos One, 2023; 18(3): e0282959. doi: 10.1371/journal.pone.0282959
|
[46] |
Yang J, Guo S, Pan B, et al. Melatonin promotes in vitro maturation of vitrified-warmed mouse GV oocytes potentially by modulating MAD2 protein expression of SAC component through MTRs. Cryobiology, 2021; 102: 82-91. doi: 10.1016/j.cryobiol.2021.07.008
|
[47] |
Gutierrez-Castillo E, Diaz F A, Talbot S A, et al. Effect of bovine oocyte vitrification with EGTA and post-warming recovery with resveratrol on meiotic spindle, mitochondrial function, reactive oxygen species, and developmental competence. Theriogenology, 2023; 196: 59-67. doi: 10.1016/j.theriogenology.2022.11.006
|
[48] |
Xu H, Jia C, Cheng W, et al. The effect of L-carnitine additive during in vitro maturation on the vitrification of pig oocytes. Cell Reprogram, 2020; 22(4): 198-207. doi: 10.1089/cell.2020.0014
|
[49] |
Shirzeyli M H, Eini F, Shirzeyli F H, et al. Assessment of mitochondrial function and developmental potential of mouse oocytes after mitoquinone supplementation during vitrification. J Am Assoc Lab Anim Sci, 2021; 60(4): 388-395. doi: 10.30802/AALAS-JAALAS-20-000123
|
[50] |
Plotnikov E Y, Zorov D B. Pros and cons of use of mitochondria-targeted antioxidants. Antioxidants (Basel), 2019; 8(8): 316. doi: 10.3390/antiox8080316
|
[51] |
Nohalez A, Martinez C, Parrilla I, et al. Exogenous ascorbic acid enhances vitrification survival of porcine in vitro-developed blastocysts but fails to improve the in vitro embryo production outcomes. Theriogenology, 2018; 113: 113-119. doi: 10.1016/j.theriogenology.2018.02.014
|
[52] |
Guerin L R, Moldenhauer L M, Prins J R, et al. Seminal fluid regulates accumulation of FOXP3+ regulatory T cells in the preimplantation mouse uterus through expanding the FOXP3+ cell pool and CCL19-mediated recruitment. Biol Reprod, 2011; 85(2): 397-408. doi: 10.1095/biolreprod.110.088591
|
[53] |
Tareq K M, Akter Q S, Khandoker M A. Selenium and vitamin E improve the in vitro maturation, fertilization and culture to blastocyst of porcine oocytes. J Reprod Dev, 2012; 58(6): 621-628. doi: 10.1262/jrd.2012-064
|
[54] |
Farzollahi M, Tayefi-Nasrabadi H, Mohammadnejad D, et al. Supplementation of culture media with vitamin E improves mouse antral follicle maturation and embryo development from vitrified ovarian tissue. J Obstet Gynaecol Res, 2016; 42(5): 526-535. doi: 10.1111/jog.12933
|
[55] |
Ito J, Shirasuna K, Kuwayama T, et al. Resveratrol treatment increases mitochondrial biogenesis and improves viability of porcine germinal-vesicle stage vitrified-warmed oocytes. Cryobiology, 2020; 93: 37-43. doi: 10.1016/j.cryobiol.2020.02.014
|
[56] |
Nowak A, Kochan J, Gabryś J, et al. The effect of resveratrol on the developmental competence of feline oocytes vitrified at the metaphase II stage. Theriogenology, 2024; 230: 101-106. doi: 10.1016/j.theriogenology.2024.08.028
|
[57] |
Giaretta E, Spinaci M, Bucci D, et al. Effects of resveratrol on vitrified porcine oocytes. Oxid Med Cell Longev, 2013; 2013(1): 920257. doi: 10.1155/2013/920257
|
[58] |
Pereira B A, Zangeronimo M G, Castillo-Martín M, et al. Supplementing maturation medium with insulin growth factor I and vitrification-warming solutions with reduced glutathione enhances survival rates and development ability of in vitro matured vitrified-warmed pig oocytes. Front Physiol, 2019; 9: 1894. doi: 10.3389/fphys.2018.01894
|
[59] |
Somfai T, Ozawa M, Noguchi J, et al. Developmental competence of in vitro-fertilized porcine oocytes after in vitro maturation and solid surface vitrification: effect of cryopreservation on oocyte antioxidative system and cell cycle stage. Cryobiology, 2007; 55(2): 115-126. doi: 10.1016/j.cryobiol.2007.06.008
|