Citation: | Xianqi Sun, Yuzhen Li, Huiwen Yu, Jiaying Lin, Chen Wang, Quanlin Liu, Bingxue Bai. ISG15 promotes M5-induced hacat cell proliferation through Wnt signaling in psoriasis[J]. Frigid Zone Medicine, 2024, 4(4): 224-232. doi: 10.1515/fzm-2024-0022 |
[1] |
Mease P, Palmer J, Hur P, et al. Utilization of the validated psoriasis epidemiology screening tool to identify signs and symptoms of psoriatic arthritis among those with psoriasis: a cross-sectional analysis from the US-based corrona psoriasis registry. J Eur Acad Dermatol Venereol, 2019; 33(5): 886-892. doi: 10.1111/jdv.15443
|
[2] |
De Simone C, Caldarola G, Moretta G, et al. Moderate-to-severe psoriasis and pregnancy: impact on fertility, pregnancy outcome and treatment perspectives. G Ital Dermatol Venereol, 2019; 154(3): 305-314.
|
[3] |
Parisi R, Iskandar I, Kontopantelis E, et al. National, regional, and worldwide epidemiology of psoriasis: systematic analysis and modelling study. BMJ, 2020; 369: m1590.
|
[4] |
Tokuyama M, Mabuchi T. New treatment addressing the pathogenesis of psoriasis. Int J Mol Sci, 2020; 21(20): 7488. doi: 10.3390/ijms21207488
|
[5] |
Girolomoni G, Strohal R, Puig L, et al. The role of IL-23 and the IL-23/ T 17 immune axis in the pathogenesis and treatment of psoriasis. J Eur Acad Dermatol Venereol, 2017, 31(10): 1616-1626. doi: 10.1111/jdv.14433
|
[6] |
Hawkes J E, Chan T C, Krueger J G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol, 2017; 140(3): 645-653. doi: 10.1016/j.jaci.2017.07.004
|
[7] |
Yong L, Yu Y, Li B, et al. Calcium/calmodulin-dependent protein kinase IV promotes imiquimod-induced psoriatic inflammation via macrophages and keratinocytes in mice. Nature commun, 2022; 13(1): 4255. doi: 10.1038/s41467-022-31935-8
|
[8] |
Juncker M, Kim C, Reed R, et al. ISG15 attenuates post-translational modifications of mitofusins and congression of damaged mitochondriain ataxia telangiectasia cells. Biochim Biophys Acta Mol Basis Dis, 2021; 1867(6): 166102. doi: 10.1016/j.bbadis.2021.166102
|
[9] |
Perng Y C, Lenschow D J. ISG15 in antiviral immunity and beyond. Nat Rev Microbiol, 2018; 16(7): 423-439. doi: 10.1038/s41579-018-0020-5
|
[10] |
Raposo R A, Gupta R, Abdel-Mohsen M, et al. Antiviral gene expression in psoriasis. J Eur Acad Dermatol Venereol, 2015; 29(10): 1951-1957. doi: 10.1111/jdv.13091
|
[11] |
Gao L, Shen J, Ren Y, et al. Discovering novel hub genes and pathways associated with the pathogenesis of psoriasis. Dermatol Ther, 2020; 33(6): e13993.
|
[12] |
Lu Y, Chen Y, Shi N, et al. L36G is associated with cutaneous antiviral competence in psoriasis. Front Immunol, 2022; 13: 971071. doi: 10.3389/fimmu.2022.971071
|
[13] |
Ma J Y, Shao S, Wang G. Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl), 2020; 133(24): 2966-2975. doi: 10.1097/CM9.0000000000001240
|
[14] |
Zhou Y, Wang P, Yan B X, et al. Quantitative proteomic profile of psoriatic epidermis identifies Oas2 as a novel biomarker for disease activity. Front Immunol, 2020; 11: 1432. doi: 10.3389/fimmu.2020.01432
|
[15] |
Chen Y, Zhang Z, Zhang Y, et al. Gene set enrichment analysis and ingenuity pathway analysis to verify the impact of Wnt signaling in psoriasis treated with Taodan granules. Am J Transl Res, 2023; 15(1): 422-434.
|
[16] |
Liu L, Zhou Y, Luo D, et al. Aberrant promoter methylation of Wnt inhibitory factor-1 gene is a potential target for treating psoriasis. Clin Immunol, 2023; 250: 109294. doi: 10.1016/j.clim.2023.109294
|