Citation: | Jiayue Zhang, Liyao Sun, Xiaohan Yu, Chen Yang, Qi An, Chaoqun Wei, Hongyan Ge. LCN2 aggravates diabetic cataracts by promoting ferroptosis in lens epithelial cells[J]. Frigid Zone Medicine, 2024, 4(3): 177-192. doi: 10.1515/fzm-2024-0018 |
[1] |
World Health Organization. Health Topics/Diabetes.
|
[2] |
Liu Y C, Wilkins M, Kim T, et al. Cataracts. Lancet, 2017; 390(10094): 600-612. doi: 10.1016/S0140-6736(17)30544-5
|
[3] |
Thiagarajan R, Manikandan R. Antioxidants and cataract. Free Radic Res, 2013; 47(5): 337-345. doi: 10.3109/10715762.2013.777155
|
[4] |
Murtha T, Cavallerano J. The management of diabetic eye disease in the setting of cataract surgery. Curr Opin Ophthalmol, 2007; 18(1): 13-18. doi: 10.1097/ICU.0b013e32801129fc
|
[5] |
Foster P J, Wong T Y, Machin D, et al. Risk factors for nuclear, cortical and posterior subcapsular cataracts in the Chinese population of Singapore: The tanjong pagar survey. Br J Ophthalmol, 2003; (9): 1112-1120.
|
[6] |
Nirmalan P K, Robin A L, Katz J, et al. Risk factors for age related cataract in a rural population of southern India: The aravind comprehensive eye study. Br J Ophthalmol. 2004; 88(8): 989-994. doi: 10.1136/bjo.2003.038380
|
[7] |
Husain R, Tong L, Fong A, et al. Prevalence of cataract in rural Indonesia. Ophthalmology, 2005; 112(7): 1255-1262. doi: 10.1016/j.ophtha.2005.02.015
|
[8] |
Dandona L, Dandona R, Naduvilath T J, et al. Population-based assessment of the outcome of cataract surgery in an urban population in southern India. Am J Ophthalmol, 1999; 127(6): 650-658. doi: 10.1016/S0002-9394(99)00044-6
|
[9] |
Chen S J, Liu J H, Shih H C, et al. Prevalence and associated factors of lens opacities among Chinese type 2 diabetics in Kinmen, Taiwan. Acta Diabetol, 2008; 45(1): 7-13. doi: 10.1007/s00592-007-0012-9
|
[10] |
Starr M R, Mahr M A, Smith W M, et al. Outcomes of patients with active diabetic macular edema at the time of cataract surgery managed with intravitreal anti-vascular endothelial growth factor injections. Am J Ophthalmol, 2021; 229(9): 194-199.
|
[11] |
Chen X, Yu C, Kang R, et al. Iron metabolism in ferroptosis. Front Cell Dev Biol, 2020; 8(10): 590226.
|
[12] |
Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an irondependent form of nonapoptotic cell death. Cell, 2012; 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042
|
[13] |
Zhao Y, Pan B, Lv X, et al. Ferroptosis: roles and molecular mechanisms in diabetic cardiomyopathy. Front Endocrinol, 2023; 14(4): 1140644.
|
[14] |
Huang Q, Tian H, Tian L, et al. Inhibiting Rev-erbα-mediated ferroptosis alleviates susceptibility to myocardial ischemia-reperfusion injury in type 2 diabetes. Free Radic Biol Med, 2023; 209(11): 135-150
|
[15] |
Wu Y, Chen Y. Research progress on ferroptosis in diabetic kidney disease. Front. Endocrinol, 2022; 29(9): 945976
|
[16] |
Abella V, Scotece M, Conde J, et al. The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases, Biomarkers. 2015; 20(8): 565-71. doi: 10.3109/1354750X.2015.1123354
|
[17] |
El Shahawy M S, Hemida M H, Abdel-Hafez H A, et al. Urinary neutrophil gelatinase-associated lipocalin as a marker for disease activity in lupus nephritis, Scand. J Clin Lab Invest, 2018; 78(4): 264-268. doi: 10.1080/00365513.2018.1449242
|
[18] |
Wells J M, Brummer R J, Derrien M, et al. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol, 2017; 312(3): G171-G193. doi: 10.1152/ajpgi.00048.2015
|
[19] |
Shao S, Fang H, Dang E, et al. Neutrophil extracellular traps promote inflammatory responses in psoriasis via activating epidermal TLR4/IL-36R crosstalk. Front Immunol, 2019; 10(4): 746.
|
[20] |
Javaid H M A, Ko E, Joo E J, et al. TNFα-induced NLRP3 inflammasome mediates adipocyte dysfunction and activates macrophages through adipocyte-derived lipocalin 2. Metabolism, 2023; 142(5): 155527.
|
[21] |
Asdaq S M B, Mannasaheb B A, Orfali R, et al. Antidiabetic and antioxidant potential of crocin in high-fat diet plus streptozotocin-induced type-2 diabetic rats. Int J Immunopathol Pharmacol, 2024; 38(11-12): 3946320231220178.
|
[22] |
Qiao Y Y, Ji J L, Hou W L, et al. tRF3-IleAAT reduced extracellular matrix synthesis in diabetic kidney disease mice by targeting ZNF281 and inhibiting ferroptosis. Acta Pharmacol Sin, 2024; 45(5): 1032-1043. doi: 10.1038/s41401-024-01228-5
|
[23] |
El Maksoud A I A, Al-Karmalawy A A, ElEbeedy D, et al. Symbiotic antidiabetic effect of Lactobacillus casei and the bioactive extract of Cleome droserifolia (Forssk. ) Del. on mice with type 2 diabetes induced by alloxan. Chem. Biodivers, 2024; 21(1): e202301397. doi: 10.1002/cbdv.202301397
|
[24] |
Goyal S N, Reddy N M, Patil K R, et al. Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact, 2016; 224(1): 49-63.
|
[25] |
Conrad M, Pratt D A. The chemical basis of ferroptosis. Nat. Chem Biol, 2019; 15(12): 1137-1147. doi: 10.1038/s41589-019-0408-1
|
[26] |
Jiang X, Stockwell B R, Conrad M. Ferroptosis: Mechanisms, biology and role in disease, Nat. Rev. Mol Cell Biol. 2021; 22(4): 266-282. doi: 10.1038/s41580-020-00324-8
|
[27] |
Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell, 2015; 59(2): 298-308. doi: 10.1016/j.molcel.2015.06.011
|
[28] |
Gao M, Monian P, Pan Q, et al. Ferroptosis is an autophagic cell death process. Cell Res, 2016; 26(9): 1021-1032. doi: 10.1038/cr.2016.95
|
[29] |
Gao M, Yi J, Zhu J, et al. Role of mitochondria in ferroptosis. Mol Cel, 2019; 73(2): 354-363. e3. doi: 10.1016/j.molcel.2018.10.042
|
[30] |
Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin. Autophagy, 2016; 12(8): 1425-1428. doi: 10.1080/15548627.2016.1187366
|
[31] |
Tan S, Schubert D, Maher P. Oxytosis: a novel form of programmed cell death, Curr. Top Med Chem, 2001; 1(6): 497-506. doi: 10.2174/1568026013394741
|
[32] |
Chen Y, Fang Z M, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis, 2023; 14(3): 205. doi: 10.1038/s41419-023-05716-0
|
[33] |
Li S, Lu S, Wang L, et al. Effects of amygdalin on ferroptosis and oxidative stress in diabetic retinopathy progression via the NRF2/ARE signaling pathway. Exp Eye Res, 2023; 234(9): 109569.
|
[34] |
Devireddy L R, Gazin C, Zhu X, et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell, 2005; 123(7): 1293-1305. doi: 10.1016/j.cell.2005.10.027
|
[35] |
Ellermann M, Arthur J C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic Biol Med, 2017; 105(4): 68-78.
|
[36] |
Li D, Yan Sun W, Fu B, et al. Lipocalin-2-The myth of its expression and function. Basic Clin Pharmacol Toxicol. 2020; 127(2): 142-151. doi: 10.1111/bcpt.13332
|
[37] |
Goetz D H, Willie S T, Armen R S, et al. Ligand preference inferred from the structure of neutrophil gelatinase associated lipocalin. Biochemistry, 2000; 39(8): 1935-1941. doi: 10.1021/bi992215v
|
[38] |
Xiao X, Yeoh B S, Vijay-Kumar M. Lipocalin 2: An emerging player in iron homeostasis and inflammation. Annu. Rev Nutr, 2017; 37(8): 103-130.
|
[39] |
Dahl S L, Woodworth J S, Lerche C J, et al. Lipocalin-2 functions as inhibitor of innate resistance to Mycobacterium tuberculosis. Front Immunol, 2018; 9(11): 2717.
|
[40] |
Guglani L, Gopal R, Rangel-Moreno J, et al. Lipocalin 2 regulates inflammation during pulmonary mycobacterial infections. PLoS One, 2012; 7(11): e50052. doi: 10.1371/journal.pone.0050052
|
[41] |
Saiga H, Nishimura J, Kuwata H, et al. Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol, 2008; 181(12): 8521-8527. doi: 10.4049/jimmunol.181.12.8521
|
[42] |
Mei T, Wu J, Wu K, et al. Lipocalin 2 induces visual impairment by promoting ferroptosis in retinal ischemia-reperfusion injury. Ann Transl Med, 2023; 11(1): 3. doi: 10.21037/atm-22-3298
|
[43] |
Wu H, Santoni-Rugiu E, Ralfkiaer E, et al. Lipocalin 2 is protective against E. coli pneumonia, Respir Res, 2010; 11(1): 96.
|
[44] |
Warszawska J M, Gawish R, Sharif O, et al. Lipocalin 2 deactivates macrophages and worsens pneumococcal pneumonia outcomes. J Clin Invest, 2013; 123(8): 3363-3372. doi: 10.1172/JCI67911
|
[45] |
Rahimi S, Roushandeh A M, Ahmadzadeh E, et al. Implication and role of neutrophil gelatinase-associated lipocalin in cancer: Lipocalin-2 as a potential novel emerging comprehensive therapeutic target for a variety of cancer types. Mol. Biol Rep, 2020; 47(1): 2327-2346.
|
[46] |
Wang Y, Jia M, Yan X, et al. Increased neutrophil gelatinaseassociated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease. Clin Sci (Lond), 2017; 131(11): 1147-1159. doi: 10.1042/CS20170096
|
[47] |
Ghosh S, Stepicheva N, Yazdankhah M, et al. The role of lipocalin-2 in age-related macular degeneration (AMD). Cell. Mol Life Sci, 2020; 77(5): 835-851.
|
[48] |
Guardado S, Ojeda-Juárez D, Kaul M, et al. Comprehensive review of lipocalin 2-mediated effects in lung inflammation. Am J Physiol Lung Cell Mol Physiol, 2021; 321(4): L726-L733.
|
[49] |
Tang W, Ma J, Gu R, et al. Light-induced lipocalin 2 facilitates cellular apoptosis by positively regulating reactive oxygen species/Bim signaling in retinal degeneration. Invest Ophthalmol Vis Sci, 2018; 59(12): 6014-6025.
|
[50] |
Chen X, Kang R, Kroemer G, et al. Ferroptosis in infection, inflammation, and immunity. J Exp Med, 2021; 218(6): e20210518.
|
[51] |
Chen Y, Yi X, Huo B, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection, Pharmacol Res, 2022; 177(5): 106122.
|
[52] |
Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis, 2019; 10(6): 449.
|
[53] |
Schnappauf O, Chae J J, Kastner D L, et al. The pyrin inflammasome in health and disease. Front. Immunol, 2019; 10(8): 1745.
|
[54] |
Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol Rev, 2020; 297(1): 123-138.
|
[55] |
Gupta U, Ghosh S, Wallace C T, et al. Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasomeferroptosis processes in a mouse model of dry AMD. Autophagy, 2023; 19(1): 92-111.
|
[56] |
Xie S S, Deng Y, Guo S L, et al. Endothelial cell ferroptosis mediates monocrotaline-induced pulmonary hypertension in rats by modulating NLRP3 inflammasome activation. Sci. Rep, 2022; 12(1): 3056.
|
[57] |
Meihe L, Shan G, Minchao K, et al. The Ferroptosis-NLRP1 inflammasome: The vicious cycle of an adverse pregnancy. Front Cell Dev Biol, 2021; 9(8): 707959.
|
[58] |
Luo L, Deng L, Chen Y, et al. Identification of lipocalin 2 as a ferroptosis-related key gene associated with hypoxic-ischemic brain damage via STAT3/NF-κB signaling pathway. Antioxidants (Basel), 2023; 12(1): 186.
|