Volume 4 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
Tengyu Zhao, Yifu Ma, Jian Zhang, Xiaojie Zhou, Yanyan Zhou, Jingdong Yan. Cold environments and human metabolism: A traditional chinese medicine perspective[J]. Frigid Zone Medicine, 2024, 4(2): 78-95. doi: 10.1515/fzm-2024-0009
Citation: Tengyu Zhao, Yifu Ma, Jian Zhang, Xiaojie Zhou, Yanyan Zhou, Jingdong Yan. Cold environments and human metabolism: A traditional chinese medicine perspective[J]. Frigid Zone Medicine, 2024, 4(2): 78-95. doi: 10.1515/fzm-2024-0009

Cold environments and human metabolism: A traditional chinese medicine perspective

doi: 10.1515/fzm-2024-0009
Funds:

the National Centre for the Development of TCM Education TC2023002

More Information
  • The concept of Traditional Chinese Medicine (TCM) emphasizes the intrinsic connection between human beings and nature, positing that the human body undergoes distinct physiological changes in response to various natural environments. Cold, as a primary external factor in cold areas, necessitates the body's autonomous adaptation to uphold optimal living conditions. The repercussions of cold on the body are both far-reaching and profound, with metabolic equilibrium adjustments playing a pivotal role. This article, rooted in the TCM principle of Yin-Yang balance, delves into the metabolic intricacies and adaptive responses to the human body in cold environments. The effects manifest in heat-producing tissues, systemic substance consumption, the blood substance concentrations, liver function, and metabolic rhythms. The article subsequently presents TCM recommendations for maintaining health in cold climates. It concludes by advocating the exploration of metabolic homeostasis changes as a key avenue for investigating the metabolic traits s of populations in cold regions. We posit that such insights will enhance comprehension of the metabolic shifts in cold region populations and advance the evolution of regional medicine.

     

  • loading
  • [1]
    McKinley M J, Yao S T, Uschakov A, et al. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiol (Oxf), 2015; 214(1): 8-32. doi: 10.1111/apha.12487
    [2]
    McInnis K, Haman F, Doucet É. Humans in the cold: Regulating energy balance. Obes Rev, 2020; 21(3): e12978. doi: 10.1111/obr.12978
    [3]
    Morrison S F. Central control of body temperature. F1000Res, 2016; 5: F1000 Faculty Rev-880. doi: 10.12688/f1000research.7958.1
    [4]
    Morrison S F, Madden C J, Tupone D. Central neural regulation of brown adipose tissue thermogenesis and energy expenditure. Cell Metab, 2014; 19(5): 741-756. doi: 10.1016/j.cmet.2014.02.007
    [5]
    Morris N B, Filingeri D, Halaki M, et al. Evidence of viscerally-mediated cold-defence thermoeffector responses in man. J Physiol, 2017; 595(4): 1201-1212. doi: 10.1113/JP273052
    [6]
    Carlisle H J. Behavioural significance of hypothalamic temperature-sensitive cells. Nature, 1966; 209(5030): 1324-1325. doi: 10.1038/2091324a0
    [7]
    Hammel H T, Hardy J D, Fusco M M. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Physiol, 1960; 198: 481-486. doi: 10.1152/ajplegacy.1960.198.3.481
    [8]
    Frare C, Williams C T, Drew K L. Thermoregulation in hibernating mammals: The role of the "thyroid hormones system". Mol Cell Endocrinol, 2021; 519: 111054. doi: 10.1016/j.mce.2020.111054
    [9]
    Silva J E. Thermogenic mechanisms and their hormonal regulation. Physiol Rev, 2006; 86(2): 435-464. doi: 10.1152/physrev.00009.2005
    [10]
    Weiner J, Hankir M, Heiker J T, et al. Thyroid hormones and browning of adipose tissue. Mol Cell Endocrinol, 2017; 458: 156-159. doi: 10.1016/j.mce.2017.01.011
    [11]
    Commins S P, Marsh D J, Thomas S A, et al. noradrenaline is required for leptin effects on gene expression in brown and white adipose tissue. Endocrinology, 1999; 140(10): 4772-4778. doi: 10.1210/en.140.10.4772
    [12]
    Townsend K L, Tseng Y H. Brown fat fuel utilization and thermogenesis. Trends Endocrinol Metab, 2014; 25(4): 168-177. doi: 10.1016/j.tem.2013.12.004
    [13]
    Park K, Li Q, Lynes M D, et al. Endothelial Cells Induced Progenitors Into Brown Fat to Reduce Atherosclerosis. Circ Res, 2022; 131(2): 168-183. doi: 10.1161/CIRCRESAHA.121.319582
    [14]
    Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity. Nat Rev Endocrinol, 2017; 13(6): 338-351. doi: 10.1038/nrendo.2016.222
    [15]
    Fischer A W, Cannon B, Nedergaard J. Leptin: Is it thermogenic? Endocr Rev, 2020; 41(2): 232-260. doi: 10.1210/endrev/bnz016
    [16]
    Seoane-Collazo P, Martínez-Sánchez N, Milbank E, et al. Incendiary leptin. Nutrients, 2020; 12(2): 472. doi: 10.3390/nu12020472
    [17]
    Tokizawa K, Onoue Y, Uchida Y, et al. Ghrelin induces time-dependent modulation of thermoregulation in the cold. Chronobiol Int, 2012; 29(6): 736-746. doi: 10.3109/07420528.2012.678452
    [18]
    Hammel H T, Hardy J D, Fusco M M. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Physiol, 1960; 198: 481-486. doi: 10.1152/ajplegacy.1960.198.3.481
    [19]
    Zhang Y, Zhao Y, Li C, et al. Physiological, immune response, antioxidant capacity and lipid metabolism changes in grazing sheep during the cold season. Animals (Basel), 2022; 12(18): 2332. doi: 10.3390/ani12182332
    [20]
    Mori H, Dugan C E, Nishii A, et al. The molecular and metabolic program by which white adipocytes adapt to cool physiologic temperatures. PLoS Biol, 2021; 19(5): e3000988. doi: 10.1371/journal.pbio.3000988
    [21]
    Zhang D, Chang S, Jing B, et al. Reactive oxygen species are essential for vasoconstriction upon cold exposure. Oxid Med Cell Longev, 2021; 2021: 8578452. doi: 10.1155/2021/8578452
    [22]
    Eyolfson D A, Tikuisis P, Xu X, et al. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol, 2001; 84(1–2): 100-106. doi: 10.1007/s004210000329
    [23]
    Blondin D P, Daoud A, Taylor T, et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J Physiol, 2017; 595(6): 2099-2113. doi: 10.1113/JP273395
    [24]
    Anunciado-Koza R P, Zhang J, Ukropec J, et al. Inactivation of the mitochondrial carrier SLC25A25 (ATP-Mg2+/Pi transporter) reduces physical endurance and metabolic efficiency in mice. J Biol Chem, 2011; 286(13): 11659-11671. doi: 10.1074/jbc.M110.203000
    [25]
    Aydin J, Shabalina I G, Place N, et al. Nonshivering thermogenesis protects against defective calcium handling in muscle. FASEB J, 2008; 22(11): 3919-3924. doi: 10.1096/fj.08-113712
    [26]
    Bal N C, Maurya S K, Sopariwala D H, et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med, 2012; 18(10): 1575-1579. doi: 10.1038/nm.2897
    [27]
    Bachman E S, Dhillon H, Zhang C Y, et al. BetaAR signaling required for diet-induced thermogenesis and obesity resistance. Science, 2002; 297(5582): 843-845. doi: 10.1126/science.1073160
    [28]
    Thomas S A, Palmiter R D. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature, 1997; 387(6628): 94-97. doi: 10.1038/387094a0
    [29]
    Janssen I, Heymsfield S B, Wang Z M, et al. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol (1985), 2000; 89(1): 81-88. doi: 10.1152/jappl.2000.89.1.81
    [30]
    Zurlo F, Larson K, Bogardus C, et al. Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest, 1990; 86(5): 1423-1427. doi: 10.1172/JCI114857
    [31]
    Haman F, Legault S R, Weber J M. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J Physiol, 2004; 556(Pt 1): 305-313.
    [32]
    Tikuisis P, Giesbrecht G G. Prediction of shivering heat production from core and mean skin temperatures. Eur J Appl Physiol Occup Physiol, 1999; 79(3): 221-229. doi: 10.1007/s004210050499
    [33]
    Dumont L, Lessard R, Semeniuk K, et al. Thermogenic responses to different clamped skin temperatures in cold-exposed men and women. Am J Physiol Regul Integr Comp Physiol, 2022; 323(1): R149-160. doi: 10.1152/ajpregu.00268.2021
    [34]
    McAllen R M, Tanaka M, Ootsuka Y, et al. Multiple thermoregulatory effectors with independent central controls. Eur J Appl Physiol, 2010; 109(1): 27-33. doi: 10.1007/s00421-009-1295-z
    [35]
    Nakamura K, Morrison S F. A thermosensory pathway that controls body temperature. Nat Neurosci, 2008; 11(1): 62-71. doi: 10.1038/nn2027
    [36]
    Tanaka M, Owens N C, Nagashima K, et al. Reflex activation of rat fusimotor neurons by body surface cooling, and its dependence on the medullary raphe. J Physiol, 2006; 572(Pt 2): 569-583. doi: 10.1113/jphysiol.2005.102400
    [37]
    Nakamura K, Morrison S F. Central efferent pathways for cold-defensive and febrile shivering. J Physiol, 2011; 589(Pt 14): 3641-3658. doi: 10.1113/jphysiol.2011.210047
    [38]
    Perkins J F. The role of the proprioceptors in shivering. Am J Physiol, 1945; 145: 264-271. doi: 10.1152/ajplegacy.1945.145.2.264
    [39]
    Sato H. Fusimotor modulation by spinal and skin temperature changes and its significance in cold shivering. Exp Neurol, 1981; 74(1): 21-32. doi: 10.1016/0014-4886(81)90146-1
    [40]
    Sato H, Hashitani T, Isobe Y, et al. Descending influences from nucleus raphe magnus on fusimotor neurone activity in rats. Journal of Thermal Biology, 1990; 15(3): 259-265. doi: 10.1016/0306-4565(90)90012-7
    [41]
    Bell D G, Tikuisis P, Jacobs I. Relative intensity of muscular contraction during shivering. J Appl Physiol (1985), 1992; 72(6): 2336-2342. doi: 10.1152/jappl.1992.72.6.2336
    [42]
    Haman F. Shivering in the cold: from mechanisms of fuel selection to survival. J Appl Physiol (1985), 2006; 100(5): 1702-1708. doi: 10.1152/japplphysiol.01088.2005
    [43]
    Haman F, Péronnet F, Kenny G P, et al. Partitioning oxidative fuels during cold exposure in humans: muscle glycogen becomes dominant as shivering intensifies. J Physiol, 2005; 566(Pt 1): 247-256.
    [44]
    Block B A. Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J Morphol, 1986; 190(2): 169-189. doi: 10.1002/jmor.1051900203
    [45]
    Block B A. Thermogenesis in muscle. Annu Rev Physiol, 1994; 56: 535-577. doi: 10.1146/annurev.ph.56.030194.002535
    [46]
    Dickson K A, Graham J B. Evolution and consequences of endothermy in fishes. Physiol Biochem Zool, 2004; 77(6): 998-1018. doi: 10.1086/423743
    [47]
    Periasamy M, Herrera J L, Reis F C G. Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes Metab J, 2017; 41(5): 327-336. doi: 10.4093/dmj.2017.41.5.327
    [48]
    Blondin D P, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol, 2018; 156: 153-173. doi: 10.1016/B978-0-444-63912-7.00010-2
    [49]
    Bal N C, Maurya S K, Singh S, et al. Increased Reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function. J Biol Chem, 2016; 291(33): 17247-17257. doi: 10.1074/jbc.M116.728188
    [50]
    Mailloux R J, Harper M E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med, 2011; 51(6): 1106-1115. doi: 10.1016/j.freeradbiomed.2011.06.022
    [51]
    Rolfe D F, Brand M D. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate. Am J Physiol, 1996; 271(4 Pt 1): C1380-1389. doi: 10.1152/ajpcell.1996.271.4.C1380
    [52]
    Boss O, Samec S, Paoloni-Giacobino A, et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett, 1997; 408(1): 39-42. doi: 10.1016/S0014-5793(97)00384-0
    [53]
    Fleury C, Neverova M, Collins S, et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat Genet, 1997; 15(3): 269-272. doi: 10.1038/ng0397-269
    [54]
    Chan C B, De Leo D, Joseph J W, et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion: mechanism of action. Diabetes, 2001; 50(6): 1302-1310. doi: 10.2337/diabetes.50.6.1302
    [55]
    Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg, 2018; 1859(9): 940-950. doi: 10.1016/j.bbabio.2018.05.019
    [56]
    Schrauwen P, Hesselink M. UCP2 and UCP3 in muscle controlling body metabolism. J Exp Biol, 2002; 205(Pt 15): 2275-2285. doi: 10.1242/jeb.205.15.2275
    [57]
    Esterbauer H, Schneitler C, Oberkofler H, et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet, 2001; 28(2): 178-183. doi: 10.1038/88911
    [58]
    Aguer C, Fiehn O, Seifert E L, et al. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation. FASEB J, 2013; 27(10): 4213-4225. doi: 10.1096/fj.13-234302
    [59]
    Monteiro B S, Freire-Brito L, Carrageta D F, et al. Mitochondrial Uncoupling Proteins (UCPs) as key modulators of ROS homeostasis: a crosstalk between diabesity and male infertility? Antioxidants (Basel), 2021; 10(11): 1746. doi: 10.3390/antiox10111746
    [60]
    Lin B, Coughlin S, Pilch P F. Bidirectional regulation of uncoupling protein-3 and GLUT-4 mRNA in skeletal muscle by cold. Am J Physiol, 1998; 275(3): E386-391. doi: 10.1152/ajpendo.1998.275.3.E386
    [61]
    Wijers S L J, Schrauwen P, van Baak M A, et al. Beta-adrenergic receptor blockade does not inhibit cold-induced thermogenesis in humans: possible involvement of brown adipose tissue. J Clin Endocrinol Metab, 2011; 96(4): E598-605. doi: 10.1210/jc.2010-1957
    [62]
    Rubtsov A M, Batrukova M A. Ca-release channels (ryanodine receptors) of sarcoplasmic reticulum: structure and properties. A review. Biochemistry (Mosc), 1997; 62(9): 933-945.
    [63]
    Meissner G, Lu X. Dihydropyridine receptor-ryanodine receptor interactions in skeletal muscle excitation-contraction coupling. Biosci Rep, 1995; 15(5): 399-408. doi: 10.1007/BF01788371
    [64]
    Nakai J, Ogura T, Protasi F, et al. Functional nonequality of the cardiac and skeletal ryanodine receptors. Proc Natl Acad Sci U S A, 1997; 94(3): 1019-1022. doi: 10.1073/pnas.94.3.1019
    [65]
    Lyfenko A D, Goonasekera S A, Dirksen R T. Dynamic alterations in myoplasmic Ca2+ in malignant hyperthermia and central core disease. Biochem Biophys Res Commun, 2004; 322(4): 1256-1266. doi: 10.1016/j.bbrc.2004.08.031
    [66]
    Mall S, Broadbridge R, Harrison S L, et al. The presence of sarcolipin results in increased heat production by Ca2+-ATPase. J Biol Chem, 2006; 281(48): 36597-36602. doi: 10.1074/jbc.M606869200
    [67]
    Smith I C, Bombardier E, Vigna C, et al. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 40-50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. PLoS One, 2013; 8(7): e68924. doi: 10.1371/journal.pone.0068924
    [68]
    Kjelstrup S, de Meis L, Bedeaux D, et al. Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump? Eur Biophys J, 2008; 38(1): 59-67. doi: 10.1007/s00249-008-0358-0
    [69]
    Inesi G, de Meis L. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem, 1989; 264(10): 5929-5936. doi: 10.1016/S0021-9258(18)83639-0
    [70]
    Lervik A, Bresme F, Kjelstrup S, et al. On the thermodynamic efficiency of Ca2+-ATPase molecular machines. Biophys J, 2012; 103(6): 1218-1226. doi: 10.1016/j.bpj.2012.07.057
    [71]
    Meltzer S, Berman M C. Effects of pH, temperature, and calcium concentration on the stoichiometry of the calcium pump of sarcoplasmic reticulum. J Biol Chem, 1984; 259(7): 4244-4253. doi: 10.1016/S0021-9258(17)43036-5
    [72]
    Gamu D, Bombardier E, Smith I C, et al. Sarcolipin provides a novel muscle-based mechanism for adaptive thermogenesis. Exerc Sport Sci Rev, 2014; 42(3): 136-142. doi: 10.1249/JES.0000000000000016
    [73]
    Bal N C, Periasamy M. Uncoupling of sarcoendoplasmic reticulum calcium ATPase pump activity by sarcolipin as the basis for muscle non-shivering thermogenesis. Philos Trans R Soc Lond B Biol Sci, 2020; 375(1793): 20190135. doi: 10.1098/rstb.2019.0135
    [74]
    Sepa-Kishi D M, Sotoudeh-Nia Y, Iqbal A, et al. Cold acclimation causes fiber type-specific responses in glucose and fat metabolism in rat skeletal muscles. Sci Rep, 2017; 7(1): 15430. doi: 10.1038/s41598-017-15842-3
    [75]
    Bal N C, Singh S, Reis F C G, et al. Both brown adipose tissue and skeletal muscle thermogenesis processes are activated during mild to severe cold adaptation in mice. J Biol Chem, 2017; 292(40): 16616-166125. doi: 10.1074/jbc.M117.790451
    [76]
    Smith W S, Broadbridge R, East JM, et al. Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem J, 2002; 361(Pt 2): 277-286. doi: 10.1042/bj3610277
    [77]
    Pant M, Bal N C, Periasamy M. Cold adaptation overrides developmental regulation of sarcolipin expression in mice skeletal muscle: SOS for muscle-based thermogenesis? J Exp Biol, 2015; 218(Pt 15): 2321-2325.
    [78]
    Maurya S K, Bal N C, Sopariwala D H, et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J Biol Chem, 2015; 290(17): 10840-10849. doi: 10.1074/jbc.M115.636878
    [79]
    Pant M, Bal N C, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab, 2016; 27(12): 881-892. doi: 10.1016/j.tem.2016.08.006
    [80]
    Kaspari R R, Reyna-Neyra A, Jung L, et al. The paradoxical lean phenotype of hypothyroid mice is marked by increased adaptive thermogenesis in the skeletal muscle. Proc Natl Acad Sci U S A, 2020; 117(36): 22544-22551. doi: 10.1073/pnas.2008919117
    [81]
    Gollnick P D, Armstrong R B, Saubert C W, et al. Glycogen depletion patterns in human skeletal muscle fibers during prolonged work. Pflugers Arch, 1973; 344(1): 1-12. doi: 10.1007/BF00587437
    [82]
    Gejl K D, Ørtenblad N, Andersson E, et al. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J Physiol, 2017; 595(9): 2809-2821. doi: 10.1113/JP273109
    [83]
    Vigh-Larsen J F, Ørtenblad N, Emil Andersen O, et al. Fibre type-and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J Physiol, 2022; 600(21): 4713-4730. doi: 10.1113/JP283225
    [84]
    Jensen R, 0rtenblad N, Stausholm M L H, et al. Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol, 2020; 598(19): 4271-4292. doi: 10.1113/JP280247
    [85]
    Amsellem J, Delorme R, Souchier C, et al. Transverse-axial tubular system in guinea pig ventricular cardiomyocyte: 3D reconstruction, quantification and its possible role in K+ accumulation-depletion phenomenon in single cells. Biol Cell, 1995; 85(1): 43-54. doi: 10.1111/j.1768-322X.1995.tb00941.x
    [86]
    Balijepalli R C, Lokuta A J, Maertz N A, et al. Depletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure. Cardiovasc Res, 2003; 59(1): 67-77. doi: 10.1016/S0008-6363(03)00325-0
    [87]
    Dombrowski L, Roy D, Marcotte B, et al. A new procedure for the isolation of plasma membranes, T tubules, and internal membranes from skeletal muscle. Am J Physiol, 1996; 270(4 Pt 1): E667-676. doi: 10.1152/ajpendo.1996.270.4.E667
    [88]
    Stefanyk L E, Bonen A, Dyck D J. Insulin and contraction-induced movement of fatty acid transport proteins to skeletal muscle transverse-tubules is distinctly different than to the sarcolemma. Metabolism, 2012; 61(11): 1518-1522. doi: 10.1016/j.metabol.2012.04.002
    [89]
    Zorzano A, Muñoz P, Camps M, et al. Insulin-induced redistribution of GLUT4 glucose carriers in the muscle fiber. In search of GLUT4 trafficking pathways. Diabetes, 1996; 45 Suppl 1: S70-81. doi: 10.2337/diab.45.1.S70
    [90]
    Dohm G L, Dolan P L, Frisell W R, et al. Role of transverse tubules in insulin stimulated muscle glucose transport. J Cell Biochem, 1993; 52(1): 1-7. doi: 10.1002/jcb.240520102
    [91]
    Dohm G L, Dudek R W. Role of transverse tubules (T-tubules) in muscle glucose transport. Adv Exp Med Biol, 1998; 441: 27-34. doi: 10.1007/978-1-4899-1928-1_3
    [92]
    Haman F, Legault S R, Weber J M. Fuel selection during intense shivering in humans: EMG pattern reflects carbohydrate oxidation. J Physiol, 2004; 556(Pt 1): 305-313. doi: 10.1113/jphysiol.2003.055152
    [93]
    Weber J M, Haman F. Fuel selection in shivering humans. Acta Physiol Scand, 2005; 184(4): 319-329. doi: 10.1111/j.1365-201X.2005.01465.x
    [94]
    Roepstorff C, Helge J W, Vistisen B, et al. Studies of plasma membrane fatty acid-binding protein and other lipid-binding proteins in human skeletal muscle. Proc Nutr Soc, 2004; 63(2): 239-244. doi: 10.1079/PNS2004332
    [95]
    Weber J M, Haman F. Oxidative fuel selection: adjusting mix and flux to stay alive. International Congress Series, 2004; 1275: 22-31. doi: 10.1016/j.ics.2004.09.043
    [96]
    Mentel T, Duch C, Stypa H, et al. Central modulatory neurons control fuel selection in flight muscle of migratory locust. J Neurosci, 2003; 23(4): 1109-1113. doi: 10.1523/JNEUROSCI.23-04-01109.2003
    [97]
    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev, 2004; 84(1): 277-359. doi: 10.1152/physrev.00015.2003
    [98]
    van Marken Lichtenbelt W D, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol, 2011; 301(2): R285-296. doi: 10.1152/ajpregu.00652.2010
    [99]
    Tran L T, Park S, Kim S K, et al. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med, 2022; 54(4): 358-369. doi: 10.1038/s12276-022-00741-z
    [100]
    Li L, Li B, Li M, et al. Switching on the furnace: regulation of heat production in brown adipose tissue. Mol Aspects Med, 2019; 68: 60-73. doi: 10.1016/j.mam.2019.07.005
    [101]
    Ko E Y, Sabanegh E S, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril, 2014; 102(6): 1518-1527. doi: 10.1016/j.fertnstert.2014.10.020
    [102]
    Virtanen K A, Lidell M E, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med, 2009; 360(15): 1518-1525. doi: 10.1056/NEJMoa0808949
    [103]
    Matthias A, Ohlson K B, Fredriksson J M, et al. Thermogenic responses in brown fat cells are fully UCP1-dependent. UCP2 or UCP3 do not substitute for UCP1 in adrenergically or fatty scid-induced thermogenesis. J Biol Chem, 2000; 275(33): 25073-25081. doi: 10.1074/jbc.M000547200
    [104]
    Crichton P G, Lee Y, Kunji E R S. The molecular features of uncoupling protein 1 support a conventional mitochondrial carrier-like mechanism. Biochimie, 2017; 134: 35-50. doi: 10.1016/j.biochi.2016.12.016
    [105]
    Klingenberg M. UCP1 - A sophisticated energy valve. Biochimie, 2017; 134: 19-27. doi: 10.1016/j.biochi.2016.10.012
    [106]
    Nicholls D G. The hunt for the molecular mechanism of brown fat thermogenesis. Biochimie, 2017; 134: 9-18. doi: 10.1016/j.biochi.2016.09.003
    [107]
    Ikeda K, Kang Q, Yoneshiro T, et al. UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med, 2017; 23(12): 1454-1465. doi: 10.1038/nm.4429
    [108]
    Irshad Z, Dimitri F, Christian M, et al. Diacylglycerol acyltransferase 2 links glucose utilization to fatty acid oxidation in the brown adipocytes. J Lipid Res, 2017; 58(1): 15-30. doi: 10.1194/jlr.M068197
    [109]
    Kazak L, Chouchani E T, Lu G Z, et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab, 2017; 26(4): 693. doi: 10.1016/j.cmet.2017.09.007
    [110]
    Lee Y H, Kim S N, Kwon H J, et al. Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue. Sci Rep, 2017; 7: 39794. doi: 10.1038/srep39794
    [111]
    Müller S, Balaz M, Stefanicka P, et al. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci Rep, 2016; 6: 30030. doi: 10.1038/srep30030
    [112]
    Liu J, Zhang C, Zhang B, et al. Comprehensive analysis of the characteristics and differences in adult and newborn Brown Adipose Tissue (BAT): Newborn BAT Is a More Active/Dynamic BAT. Cells, 2020; 9(1): 201. doi: 10.3390/cells9010201
    [113]
    Yeung H W D, Grewal R K, Gonen M, et al. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med, 2003; 44(11): 1789-1796.
    [114]
    Cypess A M, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med, 2009; 360(15): 1509-1517. doi: 10.1056/NEJMoa0810780
    [115]
    Rothwell N J, Stock M J. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond), 1983; 64(1): 19-23. doi: 10.1042/cs0640019
    [116]
    Ouellet V, Labbé S M, Blondin D P, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest, 2012; 122(2): 545-552. doi: 10.1172/JCI60433
    [117]
    Blondin D P, Labbé S M, Tingelstad H C, et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab, 2014; 99(3): E438-446. doi: 10.1210/jc.2013-3901
    [118]
    Blondin D P, Tingelstad H C, Noll C, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun, 2017; 8: 14146. doi: 10.1038/ncomms14146
    [119]
    Cohen P, Kajimura S. The cellular and functional complexity of thermogenic fat. Nat Rev Mol Cell Biol, 2021; 22(6): 393-409. doi: 10.1038/s41580-021-00350-0
    [120]
    Cousin B, Cinti S, Morroni M, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci, 1992; 103 (Pt 4): 931-942. doi: 10.1242/jcs.103.4.931
    [121]
    Barbatelli G, Murano I, Madsen L, et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab, 2010; 298(6): E1244-1253. doi: 10.1152/ajpendo.00600.2009
    [122]
    Cinti S. Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab, 2009; 297(5): E977-986. doi: 10.1152/ajpendo.00183.2009
    [123]
    Lee Y H, Petkova A P, Konkar A A, et al. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J, 2015; 29(1): 286-299. doi: 10.1096/fj.14-263038
    [124]
    Loncar D. Convertible adipose tissue in mice. Cell Tissue Res, 1991; 266(1): 149-161. doi: 10.1007/BF00678721
    [125]
    Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab, 2018; 29(3): 191-200. doi: 10.1016/j.tem.2018.01.001
    [126]
    Chen L, Jin Y, Wu J, et al. Lipid droplets: a cellular organelle vital for thermogenesis. Int J Biol Sci, 2022; 18(16): 6176-6188. doi: 10.7150/ijbs.77051
    [127]
    Bartelt A, Bruns O T, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med, 2011; 17(2): 200-205. doi: 10.1038/nm.2297
    [128]
    Sponton C H, de Lima-Junior J C, Leiria L O. What puts the heat on thermogenic fat: metabolism of fuel substrates. Trends Endocrinol Metab, 2022; 33(8): 587-599. doi: 10.1016/j.tem.2022.05.003
    [129]
    Fischer A W, Jaeckstein M Y, Gottschling K, et al. Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab, 2021; 33(3): 547-564.e7. doi: 10.1016/j.cmet.2020.12.001
    [130]
    Wu Q, Kazantzis M, Doege H, et al. Fatty acid transport protein 1 is required for nonshivering thermogenesis in brown adipose tissue. Diabetes, 2006; 55(12): 3229-3237. doi: 10.2337/db06-0749
    [131]
    Heeren J, Scheja L. Brown adipose tissue and lipid metabolism. Curr Opin Lipidol, 2018; 29(3): 180-185. doi: 10.1097/MOL.0000000000000504
    [132]
    Abumrad N A. The liver as a hub in thermogenesis. Cell Metab, 2017; 26(3): 454-455. doi: 10.1016/j.cmet.2017.08.018
    [133]
    Simcox J, Geoghegan G, Maschek J A, et al. Global analysis of plasma lipids identifies liver-derived acylcarnitines as a fuel source for brown fat thermogenesis. Cell Metab, 2017; 26(3): 509-522.e6. doi: 10.1016/j.cmet.2017.08.006
    [134]
    Orava J, Nuutila P, Lidell M E, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab, 2011; 14(2): 272-279. doi: 10.1016/j.cmet.2011.06.012
    [135]
    Ma S W, Foster D O. Uptake of glucose and release of fatty acids and glycerol by rat brown adipose tissue in vivo. Can J Physiol Pharmacol, 1986; 64(5): 609-614. doi: 10.1139/y86-101
    [136]
    Choung S, Kim J M, Joung K H, et al. Mig-6 is essential for glucose homeostasis and thermogenesis in brown adipose tissue. Biochem Biophys Res Commun, 2021; 572: 92-97. doi: 10.1016/j.bbrc.2021.07.088
    [137]
    DiStefano M T, Roth Flach R J, Senol-Cosar O, et al. Adipocytespecific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Mol Metab, 2016; 5(12): 1149-1161. doi: 10.1016/j.molmet.2016.09.009
    [138]
    Fernandes G W, Ueta C B, Fonseca T L, et al. Inactivation of the adrenergic receptor β2 disrupts glucose homeostasis in mice. J Endocrinol, 2014; 221(3): 381-390. doi: 10.1530/JOE-13-0526
    [139]
    van Beek S M M, Kalinovich A, Schaart G, et al. Prolonged β2-adrenergic agonist treatment improves glucose homeostasis in diet-induced obese UCP1-/- mice. Am J Physiol Endocrinol Metab, 2021; 320(3): E619-628. doi: 10.1152/ajpendo.00324.2020
    [140]
    van Schaik L, Kettle C, Green R, et al. Both caffeine and Capsicum annuum fruit powder lower blood glucose levels and increase brown adipose tissue temperature in healthy adult males. Front Physiol, 2022; 13: 870154. doi: 10.3389/fphys.2022.870154
    [141]
    Wang L, Qiu Y, Gu H, et al. Regulation of adipose thermogenesis and its critical role in glucose and lipid metabolism. Int J Biol Sci, 2022; 18(13): 4950-4962. doi: 10.7150/ijbs.75488
    [142]
    Chondronikola M, Volpi E, Børsheim E, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes, 2014; 63(12): 4089-4099. doi: 10.2337/db14-0746
    [143]
    Stanford K I, Middelbeek R J W, Townsend K L, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest, 2013; 123(1): 215-223. doi: 10.1172/JCI62308
    [144]
    Guerra C, Navarro P, Valverde A M, et al. Brown adipose tissue-specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest, 2019; 129(1): 437. doi: 10.1172/JCI126191
    [145]
    Muntzel M S, Anderson E A, Johnson A K, et al. Mechanisms of insulin action on sympathetic nerve activity. Clin Exp Hypertens, 1995; 17(1–2): 39-50. doi: 10.3109/10641969509087053
    [146]
    Maliszewska K, Kretowski A. Brown adipose tissue and its role in insulin and glucose homeostasis. Int J Mol Sci, 2021; 22(4): 1530. doi: 10.3390/ijms22041530
    [147]
    Vallerand A L, Pérusse F, Bukowiecki L J. Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. Am J Physiol, 1990; 259(5 Pt 2): R1043-1049. doi: 10.1152/ajpregu.1990.259.5.R1043
    [148]
    Glickman-Weiss E L, Nelson A G, Hearon C M, et al. Does feeding regime affect physiologic and thermal responses during exposure to 8, 20, and 27 degrees C? Eur J Appl Physiol Occup Physiol, 1993; 67(1): 30-34. doi: 10.1007/BF00377700
    [149]
    Glickman-Weiss E L, Nelson A G, Hearon C M, et al. The thermogenic effect of a carbohydrate feeding during exposure to 8, 12 and 27 degrees C. Eur J Appl Physiol Occup Physiol, 1994; 68(4): 291-297. doi: 10.1007/BF00571445
    [150]
    MacNaughton K W, Sathasivam P, Vallerand A L, et al. Influence of caffeine on metabolic responses of men at rest in 28 and 5 degrees C. J Appl Physiol (1985), 1990; 68(5): 1889-1895. doi: 10.1152/jappl.1990.68.5.1889
    [151]
    Martineau L, Jacobs I. Muscle glycogen availability and temperature regulation in humans. J Appl Physiol (1985), 1989; 66(1): 72-78. doi: 10.1152/jappl.1989.66.1.72
    [152]
    Martineau L, Jacobs I. Free fatty acid availability and temperature regulation in cold water. J Appl Physiol (1985), 1989; 67(6): 2466-2472. doi: 10.1152/jappl.1989.67.6.2466
    [153]
    Tikuisis P, Jacobs I, Moroz D, et al. Comparison of thermoregulatory responses between men and women immersed in cold water. J Appl Physiol (1985), 2000; 89(4): 1403-1411. doi: 10.1152/jappl.2000.89.4.1403
    [154]
    Vallerand A L, Zamecnik J, Jones P J, et al. FFA Ra and TG/FFA cycling in humans. Aviat Space Environ Med, 1999; 70(1): 42-50.
    [155]
    Vallerand A L, Jacobs I. Rates of energy substrates utilization during human cold exposure. Eur J Appl Physiol Occup Physiol, 1989; 58(8): 873-878. doi: 10.1007/BF02332221
    [156]
    Vallerand A L, Jacobs I. Influence of cold exposure on plasma triglyceride clearance in humans. Metabolism, 1990; 39(11): 1211-1218. doi: 10.1016/0026-0495(90)90097-V
    [157]
    Haman F, Péronnet F, Kenny G P, et al. Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J Appl Physiol (1985), 2002; 93(1): 77-84. doi: 10.1152/japplphysiol.00773.2001
    [158]
    Haman F, Péronnet F, Kenny G P, et al. Partitioning oxidative fuels during cold exposure in humans: muscle glycogen becomes dominant as shivering intensifies. J Physiol, 2005; 566(Pt 1): 247-256. doi: 10.1113/jphysiol.2005.086272
    [159]
    Haman F, Peronnet F, Kenny G P, et al. Effects of carbohydrate availability on sustained shivering I. Oxidation of plasma glucose, muscle glycogen, and proteins. J Appl Physiol (1985), 2004; 96(1): 32-40. doi: 10.1152/japplphysiol.00427.2003
    [160]
    Haman F, Scott C G, Kenny G P. Fueling shivering thermogenesis during passive hypothermic recovery. J Appl Physiol (1985), 2007; 103(4): 1346-1351. doi: 10.1152/japplphysiol.00931.2006
    [161]
    Haman F, Mantha O L, Cheung S S, et al. Oxidative fuel selection and shivering thermogenesis during a 12- and 24-h cold-survival simulation. J Appl Physiol, 2016; 120(6): 640-648. doi: 10.1152/japplphysiol.00540.2015
    [162]
    Neufer P D, Young A J, Sawka M N, et al. Influence of skeletal muscle glycogen on passive rewarming after hypothermia. J Appl Physiol (1985), 1988; 65(2): 805-810. doi: 10.1152/jappl.1988.65.2.805
    [163]
    Acosta F M, Martinez-Tellez B, Sanchez-Delgado G, et al. Physiological responses to acute cold exposure in young lean men. PLoS One, 2018; 13(5): e0196543. doi: 10.1371/journal.pone.0196543
    [164]
    Rolfe D F, Brown G C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev, 1997; 77(3): 731-758. doi: 10.1152/physrev.1997.77.3.731
    [165]
    Gordon K, Blondin D P, Friesen B J, et al. Seven days of cold acclimation substantially reduces shivering intensity and increases nonshivering thermogenesis in adult humans. J Appl Physiol (1985), 2019; 126(6): 1598-1606. doi: 10.1152/japplphysiol.01133.2018
    [166]
    Himms-Hagen J. Lipid metabolism during cold-exposure and during cold-acclimation. Lipids, 1972; 7(5): 310-323. doi: 10.1007/BF02532649
    [167]
    Thompson G E. Physiological effects of cold exposure. Int Rev Physiol, 1977; 15: 29-69.
    [168]
    Tipton M J, Franks G M, Meneilly G S, et al. Substrate utilisation during exercise and shivering. Eur J Appl Physiol Occup Physiol, 1997; 76(1): 103-108. doi: 10.1007/s004210050220
    [169]
    Vallerand A L, Zamecnik J, Jacobs I. Plasma glucose turnover during cold stress in humans. J Appl Physiol (1985), 1995; 78(4): 1296-1302. doi: 10.1152/jappl.1995.78.4.1296
    [170]
    Blondin D P, Labbé S M, Phoenix S, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol, 2015; 593(3): 701-714. doi: 10.1113/jphysiol.2014.283598
    [171]
    Cunningham J J, Gulino M A, Meara P A, et al. Enhanced hepatic insulin sensitivity and peripheral glucose uptake in cold acclimating rats. Endocrinology, 1985; 117(4): 1585-1589. doi: 10.1210/endo-117-4-1585
    [172]
    Hanssen M J W, Hoeks J, Brans B, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med, 2015; 21(8): 863-865. doi: 10.1038/nm.3891
    [173]
    Poher A L, Altirriba J, Veyrat-Durebex C, et al. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol, 2015; 6: 4. doi: 10.3389/fphys.2015.00004
    [174]
    Sugimoto S, Mena H A, Sansbury B E, et al. Brown adipose tissue-derived MaR2 contributes to cold-induced resolution of inflammation. Nat Metab, 2022; 4(6): 775-790. doi: 10.1038/s42255-022-00590-0
    [175]
    Young S G, Zechner R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev, 2013; 27(5): 459-484. doi: 10.1101/gad.209296.112
    [176]
    Straat M E, Jurado-Fasoli L, Ying Z, et al. Cold exposure induces dynamic changes in circulating triacylglycerol species, which is dependent on intracellular lipolysis: a randomized cross-over trial. EBioMedicine, 2022; 86: 104349. doi: 10.1016/j.ebiom.2022.104349
    [177]
    Shiota M, Tanaka T, Sugano T. Effect of noradrenaline on gluconeogenesis in perfused livers of cold-exposed rats. Am J Physiol, 1985; 249(3 Pt 1): E281-286. doi: 10.1152/ajpendo.1985.249.3.E281
    [178]
    Shi H, Yao R, Lian S, et al. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress, 2019; 22(3): 366-376. doi: 10.1080/10253890.2019.1568987
    [179]
    Stoner H B. The role of the liver in non-shivering thermogenesis in the rat. J Physiol, 1973; 232(2): 285-296. doi: 10.1113/jphysiol.1973.sp010270
    [180]
    Khedoe P P S J, Hoeke G, Kooijman S, et al. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res, 2015; 56(1): 51-59. doi: 10.1194/jlr.M052746
    [181]
    Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol, 2016; 64(5): 1176-1186. doi: 10.1016/j.jhep.2016.01.025
    [182]
    Evangelakos I, Kuhl A, Baguhl M, et al. Cold-induced lipoprotein clearance in CYP7B1-deficient mice. Front Cell Dev Biol, 2022; 10: 836741. doi: 10.3389/fcell.2022.836741
    [183]
    Worthmann A, John C, Rühlemann M C, et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med, 2017; 23(7): 839-849. doi: 10.1038/nm.4357
    [184]
    Perino A, Schoonjans K. Metabolic messengers: bile acids. Nat Metab, 2022; 4(4): 416-423. doi: 10.1038/s42255-022-00559-z
    [185]
    Ockenga J, Valentini L, Schuetz T, et al. Plasma bile acids are associated with energy expenditure and thyroid function in humans. J Clin Endocrinol Metab, 2012; 97(2): 535-542. doi: 10.1210/jc.2011-2329
    [186]
    Soufi N, Kohli R. What's cold got to do with it? Cold-induced thermogenesis and microbiome modification may be regulated by bile acid physiology. Hepatology, 2018; 68(4): 1644-1646. doi: 10.1002/hep.29899
    [187]
    Spann R A, Morrison C D, den Hartigh L J. The nuanced metabolic functions of endogenous FGF21 depend on the nature of the stimulus, tissue source, and experimental model. Front Endocrinol (Lausanne), 2021; 12: 802541. doi: 10.3389/fendo.2021.802541
    [188]
    Piao Z, Zhai B, Jiang X, et al. Reduced adiposity by compensatory WAT browning upon iBAT removal in mice. Biochem Biophys Res Commun, 2018; 501(3): 807-813. doi: 10.1016/j.bbrc.2018.05.089
    [189]
    Markan K R, Naber M C, Ameka M K, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes, 2014; 63(12): 4057-4063. doi: 10.2337/db14-0595
    [190]
    Owen B M, Ding X, Morgan D A, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab, 2014; 20(4): 670-677. doi: 10.1016/j.cmet.2014.07.012
    [191]
    Lee P, Brychta R J, Linderman J, et al. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab, 2013; 98(1): E98-102. doi: 10.1210/jc.2012-3107
    [192]
    Lee P, Linderman J D, Smith S, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab, 2014; 19(2): 302-309. doi: 10.1016/j.cmet.2013.12.017
    [193]
    Huang Z, Zhong L, Lee J T H, et al. The FGF21-CCL11 axis mediates beiging of white adipose tissues by coupling sympathetic nervous system to type 2 immunity. Cell Metab, 2017; 26(3): 493-508.e4. doi: 10.1016/j.cmet.2017.08.003
    [194]
    Ameka M, Markan K R, Morgan D A, et al. Liver derived FGF21 maintains core body temperature during acute cold exposure. Sci Rep, 2019; 9(1): 630. doi: 10.1038/s41598-018-37198-y
    [195]
    Kinouchi K, Mikami Y, Kanai T, et al. Circadian rhythms in the tissue-specificity from metabolism to immunity: insights from omics studies. Mol Aspects Med, 2021; 80: 100984. doi: 10.1016/j.mam.2021.100984
    [196]
    Matsushita M, Nirengi S, Hibi M, et al. Diurnal variations of brown fat thermogenesis and fat oxidation in humans. Int J Obes (Lond), 2021; 45(11): 2499-2505. doi: 10.1038/s41366-021-00927-x
    [197]
    Guan D, Xiong Y, Borck P C, et al. Diet-induced circadian enhancer remodeling synchronizes opposing hepatic lipid metabolic processes. Cell, 2018; 174(4): 831-842.e12. doi: 10.1016/j.cell.2018.06.031
    [198]
    Billings M E, Hale L, Johnson D A. Physical and social environment relationship with sleep health and disorders. Chest, 2020; 157(5): 1304-1312. doi: 10.1016/j.chest.2019.12.002
    [199]
    Kraneburg A, Franke S, Methling R, et al. Effect of color temperature on melatonin production for illumination of working environments. Appl Ergon, 2017; 58: 446-453. doi: 10.1016/j.apergo.2016.08.006
    [200]
    Everett L J, Lazar M A. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab, 2014; 25(11): 586-592. doi: 10.1016/j.tem.2014.06.011
    [201]
    Le Martelot G, Claudel T, Gatfield D, et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol, 2009; 7(9): e1000181. doi: 10.1371/journal.pbio.1000181
    [202]
    Bugge A, Feng D, Everett L J, et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev, 2012; 26(7): 657-667. doi: 10.1101/gad.186858.112
    [203]
    Delezie J, Dumont S, Dardente H, et al. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J, 2012; 26(8): 3321-3335. doi: 10.1096/fj.12-208751
    [204]
    Chappuis S, Ripperger J A, Schnell A, et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab, 2013; 2(3): 184-193. doi: 10.1016/j.molmet.2013.05.002
    [205]
    Gerhart-Hines Z, Feng D, Emmett M J, et al. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature, 2013; 503(7476): 410-413. doi: 10.1038/nature12642
    [206]
    Woldt E, Sebti Y, Solt L A, et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med, 2013; 19(8): 1039-1046. doi: 10.1038/nm.3213
    [207]
    Moraes M N, Mezzalira N, de Assis L V M, et al. TRPV1 participates in the activation of clock molecular machinery in the brown adipose tissue in response to light-dark cycle. Biochim Biophys Acta Mol Cell Res, 2017; 1864(2): 324-335. doi: 10.1016/j.bbamcr.2016.11.010
    [208]
    Zhu Y, Liu Y, Escames G, et al. Deciphering clock genes as emerging targets against aging. Ageing Res Rev, 2022; 81: 101725. doi: 10.1016/j.arr.2022.101725
    [209]
    Zhang Z, Cheng L, Ma J, et al. Chronic cold exposure leads to daytime preference in the circadian expression of hepatic metabolic genes. Front Physiol, 2022; 13: 865627. doi: 10.3389/fphys.2022.865627
    [210]
    Ma S, Yu H, Zhao Z, et al. Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J Mol Cell Biol, 2012; 4(2): 88-96. doi: 10.1093/jmcb/mjs001
    [211]
    Straat M E, Martinez-Tellez B, Sardjoe Mishre A, et al. Cold-induced thermogenesis shows a diurnal variation that unfolds differently in males and females. J Clin Endocrinol Metab, 2022; 107(6): 1626-1635. doi: 10.1210/clinem/dgac094
    [212]
    Sellers A J, Khovalyg D, Plasqui G, et al. High daily energy expenditure of Tuvan nomadic pastoralists living in an extreme cold environment. Sci Rep, 2022; 12(1): 20127. doi: 10.1038/s41598-022-23975-3
    [213]
    Kaznacheev V P, Panin L E, Kovalenko L A. Urgent problems of rational nutrition for the immigrant population in Arctic regions and for the natives of the North. Vopr Pitan, 1980; (1): 23-27.
    [214]
    Gibas-Dorna M, Checinska Z, Korek E, et al. Variations in leptin and insulin levels within one swimming season in non-obese female cold water swimmers. Scand J Clin Lab Invest, 2016; 76(6): 486-491. doi: 10.1080/00365513.2016.1201851
    [215]
    Mengel L A, Seidl H, Brandl B, et al. Gender differences in the response to short-term cold exposure in young adults. J Clin Endocrinol Metab, 2020; 105(5): dgaa110. doi: 10.1210/clinem/dgaa110
    [216]
    Sun L, Yan J, Goh H J, et al. Fibroblast growth factor-21, leptin, and adiponectin responses to acute cold-induced brown adipose tissue activation. J Clin Endocrinol Metab, 2020; 105(3): e520-531. doi: 10.1210/clinem/dgaa005
    [217]
    Tomasik P J, Sztefko K, Pizon M. The effect of short-term cold and hot exposure on total plasma ghrelin concentrations in humans. Horm Metab Res, 2005; 37(3): 189-190. doi: 10.1055/s-2005-861296
    [218]
    Schmidek W R, Hoshino K, Schmidek M, et al. Influence of environmental temperature on the sleep-wakefulness cycle in the rat. Physiol Behav, 1972; 8(2): 363-371. doi: 10.1016/0031-9384(72)90384-8
    [219]
    Valatx JL, Roussel B, Curé M. Sleep and cerebral temperature in rat during chronic heat exposure. Brain Res, 1973; 55(1): 107-122. doi: 10.1016/0006-8993(73)90491-5
    [220]
    Fischl H, McManus D, Oldenkamp R, et al. Cold-induced chromatin compaction and nuclear retention of clock mRNAs resets the circadian rhythm. EMBO J, 2020; 39(22): e105604. doi: 10.15252/embj.2020105604
    [221]
    Mahapatra A P K, Mallick H N, Kumar V M. Changes in sleep on chronic exposure to warm and cold ambient temperatures. Physiol Behav, 2005; 84(2): 287-294. doi: 10.1016/j.physbeh.2004.12.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (138) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return