留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Association of point in range with β-cell function and insulin sensitivity of type 2 diabetes mellitus in cold areas

Yanan Ni Dan Liu Xiaona Zhang Hong Qiao

Yanan Ni, Dan Liu, Xiaona Zhang, Hong Qiao. Association of point in range with β-cell function and insulin sensitivity of type 2 diabetes mellitus in cold areas[J]. Frigid Zone Medicine, 2023, 3(4): 242-252. doi: 10.2478/fzm-2023-0031
Citation: Yanan Ni, Dan Liu, Xiaona Zhang, Hong Qiao. Association of point in range with β-cell function and insulin sensitivity of type 2 diabetes mellitus in cold areas[J]. Frigid Zone Medicine, 2023, 3(4): 242-252. doi: 10.2478/fzm-2023-0031

Association of point in range with β-cell function and insulin sensitivity of type 2 diabetes mellitus in cold areas

doi: 10.2478/fzm-2023-0031
Funds: None of the authors accepted external funding or financial support
More Information
  • Figure  1.  Different levels of insulin secretion-sensitivity index-2 (ISSI-2), logISSI-2, (ΔC-peptide0–120/Δglucose0–120) × Matsuda index and log(ΔC-peptide0–120/Δglucose0–120) × Matsuda index among patients with different point in range (PIR) quartiles. Comparisons of ISSI-2(A), logISSI-2(B), (ΔC-peptide0–120/Δglucose0–120) × Matsuda index (C) and log(ΔC-peptide0–120/Δglucose0–120) × Matsuda index (D) among patients with different PIR quartiles (Q1-Q4). P-value for the significant difference among the groups was determined by Wilcoxon rank sum test (A, C), one-way ANCOVA (B, D). Q1: PIR ≤ 51.5%, Q2: 51.5% < PIR ≤ 68.0%, Q3: 68.0% < PIR ≤ 80.0%, Q4: PIR > 80.0%. Data are presented as the median and interquartile range (25th–75th) (A, C), mean ± SD (B, D). P < 0.001 vs. group Q1; #P < 0.001 vs. group Q2; & P < 0.001 vs. group Q3 in panel B; P < 0.001 vs. group Q1; #P < 0.05, ##P < 0.001 vs. group Q2; & P < 0.001 vs. group Q3 in panel D.

    Figure  2.  Different levels of Matsuda index and log Matsuda index among patients with different PIR quartiles. Comparisons of Matsuda index(A) and log Matsuda index(B) among patients with different point in range (PIR) quartiles (Q1-Q4). P-value for the significant difference among the groups was determined by Wilcoxon rank sum test (A), one-way ANCOVA (B). Q1: PIR ≤ 51.5%, Q2: 51.5% < PIR ≤ 68.0%, Q3: 68.0% < PIR ≤ 80.0%, Q4: PIR > 80.0%. Data are presented as the median and interquartile range (25th–75th) (A), mean ± SD (B). P < 0.001 vs. group Q1.

    Figure  3.  Different levels of HOMA-IR and log HOMA of insulin resistance (HOMA-IR) among patients with different point in range (PIR) quartiles. Comparisons of HOMA-IR(A) and log HOMA-IR(B) among patients with different PIR quartiles (Q1-Q4). P-value for the significant difference among the groups was determined by Wilcoxon rank sum test(A), one-way ANCOVA(B). Q1: PIR ≤ 51.5%, Q2: 51.5% < PIR ≤ 68.0%, Q3: 68.0% < PIR ≤ 80.0%, Q4: PIR > 80.0%. Data are presented as the median and interquartile range (25th–75th) (A), mean ± SD (B). ***P < 0.001 vs. group Q1; #P < 0.05 vs. group Q2.

    Figure  4.  The relationships of point in range (PIR) and log Insulin Secretion-Sensitivity Index-2 (ISSI-2) (A), log (ΔC-peptide0–120/Δglucose0–120) × Matsuda index (B), log Matsuda index (C), and log HOMA-IR (D) in the participants. Pearson's correlation test was used to determine the relationship.

    Table  1.   Clinical characteristics of the participants according to PIR quartiles

    Variables Q1 Q2 Q3 Q4 P
    Age (years) 53.0 (47.0-62.0) 55.0 (46.0-64.0) 55.0 (47.0-61.5) 53.0 (43.0-60.0) 0.395
    Male (n, %) 69.0 (61.6) 67.0 (51.5) 65.0 (54.2) 56.0 (50.9) 0.345
    BMI (kg/m2) 25.0 (23.3-27.5) 25.4 (23.8-28.4) 25.5 (23.0-27.5) 26.1 (23.6-28.4) 0.203
    Risk factors
      SBP (mmHg) 135.5 (125.5-149.0) 138.0 (125.0-151.0) 139.0 (124.0-150.0) 138.0 (124.0-153.0) 0.898
      DBP (mmHg) 86.5 (78.0-95.5) 86.0 (79.0-93.0) 85.5 (79.0-97.0) 89.0 (82.0-95.0) 0.263
      Current Smoking (n, %) 33.0 (29.5) 34.0 (26.2) 24.0 (20.0) 17.0 (15.5) 0.057
      Current alcohol drinker (n, %) 20.0 (17.9) 13.0 (10.0) 17.0 (14.2) 11.0 (10.0) 0.221
      Family history of diabetes (n, %) 21.0 (18.8) 27.0 (20.8) 16.0 (13.3) 18.0 (16.4) 0.451
      Diabetes duration (years) (n, %)
         < 5 years 51.0 (45.5) 53.0 (40.8) 63.0 (52.5) 72.0 (65.4) 0.001
        5-10 years 26.0 (23.2) 34.0 (26.1) 26.0 (21.7) 19.0 (17.3) 0.001
         > 10 years 35.0 (31.3) 43.0 (33.1) 31.0 (25.8) 19.0 (17.3) 0.001
    Laboratory data
      HbA1c (%) 10.2 (9.1-11.1) 9.6 (8.2-10.7) 8.7 (7.8-10.7) 8.3 (7.1-9.6) < 0.001
      eGFR (mL/min) 94.0 (73.9-124.7) 96.4 (75.2-120.8) 101.8 (74.0-130.8) 104.6 (83.2-126.6) 0.270
      TG (mmol/L) 2.07 (1.28-3.21) 1.78 (1.30-2.79) 1.76 (1.13-2.75) 1.67 (1.14-2.47) 0.089
      TC (mmol/L) 4.98 (4.27-5.80) 4.69 (3.91-5.47) 4.84 (3.82-5.73) 5.04 (4.02-5.61) 0.204
      HDL-C (mmol/L) 1.07 (0.92-1.26) 1.04 (0.90-1.19) 1.09 (0.90-1.27) 1.14 (1.01-1.33) 0.018
      LDL-C (mmol/L) 3.03 (2.43-3.70) 2.85 (2.08-3.35) 2.65 (2.20-3.71) 2.95 (2.20-3.67) 0.216
    Data are expressed as the median and interquartile range (25th–75th) for variables without a normal distribution. Categorical data are expressed as frequency and percentage. Between the four groups, the P-values were calculated using Wilcoxon rank sum test. BMI: body mass index; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; HbA1c: glycated hemoglobin; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; TC: total cholesterol; TG: triglyceride; PIR: point in range; SBP: systolic blood pressure.
    下载: 导出CSV

    Table  2.   Multiple linear regression models for logISSI-2 and log(ΔC-peptide0–120/Δglucose0–120) × Matsuda index

    Variables β standardized regression coefficient P-value
    For logISSI-2
      PIR (%) 0.110 0.243 < 0.001
      Diabetes duration (years) -0.120 -0.206 < 0.001
      HbA1c (%) -0.054 -0.209 < 0.001
      LDL-C (mmol/L) -0.064 -0.125 0.001
    For log(ΔC-peptide0–120/Δglucose0–120) × Matsuda index
      PIR (%) 0.269 0.307 < 0.001
      Diabetes duration (years) -0.231 -0.206 < 0.001
      HbA1c (%) -0.165 -0.329 < 0.001
      eGFR (mL/min) 0.002 0.104 0.015
      TC (mmol/L) -0.059 -0.078 0.043
    eGFR: estimated glomerular filtration rate; HbA1c: glycated hemoglobin; ISSI-2: insulin secretion-sensitivity index-2; LDL-C: low-density lipoprotein cholesterol; PIR: point in range; TC: total cholesterol.
    下载: 导出CSV

    Table  3.   Multiple linear regression models for log Matsuda index

    Variables β standardized regression coefficient P-value
    PIR (%) 0.076 0.166 < 0.001
    Male (%) -0.156 -0.157 < 0.001
    BMI (kg/m2) -0.035 -0.252 < 0.001
    TG (mmol/L) -0.032 -0.163 < 0.001
    HDL-C (mmol/L) 0.214 0.119 0.011
    LDL-C (mmol/L) -0.049 -0.096 0.030
    BMI: body mass index; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein cholesterol; PIR: point in range; TG: triglyceride.
    下载: 导出CSV

    Table  4.   Multiple linear regression models for log HOMA-IR

    Variables β standardized regression coefficient P-value
    PIR (%) -0.146 -0.269 < 0.001
    Male (%) 0.107 0.089 0.039
    BMI (kg/m2) 0.036 0.215 < 0.001
    TC (mmol/L) 0.079 0.169 < 0.001
    HDL-C (mmol/L) -0.357 -0.167 < 0.001
    BMI: body mass index; HDL-C: high-density lipoprotein cholesterol; TC: total cholesterol; HOMA-IR: HOMA of insulin resistance; PIR: point in range.
    下载: 导出CSV
  • [1] Porte D. β-cells in type Ⅱ diabetes mellitus. Diabetes, 1991; 40(2): 166–180. doi: 10.2337/diab.40.2.166
    [2] Defronzo R A. Lilly lecture 1987. The triumvirate: Beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes, 1988; 37(6): 667-687. doi: 10.2337/diab.37.6.667
    [3] Stratton I M, Adler A I, Neil H A, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 2000; 321(7258): 405–412. doi: 10.1136/bmj.321.7258.405
    [4] Kramer C K, Choi H, Zinman B, et al. Glycemic variability in patients with early type 2 diabetes: the impact of improvement in β-cell function. Diabetes Care, 2014; 37(4): 1116–1123. doi: 10.2337/dc13-2591
    [5] Liu L, Liu J, Xu L, et al. Lower mean blood glucose during short-term intensive insulin therapy is associated with long-term glycemic remission in patients with newly diagnosed type 2 diabetes: Evidence-based recommendations for standardization. J Diabetes Investig, 2018; 9(4): 908–916. doi: 10.1111/jdi.12782
    [6] Rohlfing C L, Wiedmeyer H M, Little R R, et al. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications Trial. Diabetes Care, 2002; 25(2): 275–278. doi: 10.2337/diacare.25.2.275
    [7] Nitin S. HbA1c and factors other than diabetes mellitus affecting it. Singapore Med J, 2010; 51(8): 616–22. PMID: 20848057.
    [8] Lu J, Ma X, Zhou J, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care, 2018; 41(11): 2370–2376. doi: 10.2337/dc18-1131
    [9] García-Lorenzo B, Rivero-Santana A, Vallejo-Torres L, et al. Cost-effectiveness analysis of real-time continuous monitoring glucose compared to self-monitoring of blood glucose for diabetes mellitus in Spain. Endocrinol Diabetes Nutr, 2018; 65(7): 380–386. doi: 10.1016/j.endinu.2018.03.008
    [10] Young L A, Buse J B, Weaver M A, et al. Glucose self-monitoring in non-insulin-treated patients with type 2 diabetes in primary care settings: A randomized trial. JAMA Intern Med, 2017; 177(7): 920–929. doi: 10.1001/jamainternmed.2017.1233
    [11] Cutruzzolà A, Irace C, Parise M, et al. Time spent in target range assessed by self-monitoring blood glucose associates with glycated hemoglobin in insulin treated patients with diabetes. Nutr Metab Cardiovasc Dis, 2020; 30(10): 1800–1805. doi: 10.1016/j.numecd.2020.06.009
    [12] The Diabetes Research in Children Network DirecNet Study Group. Eight-point glucose testing versus the continuous glucose monitoring system in evaluation of glycemic control in type 1 diabetes. J Clin Endocrinol Metab, 2005; 90(6): 3387–3391. doi: 10.1210/jc.2004-2510
    [13] Brackney, Elisabeth D. Enhanced self-monitoring blood glucose in non-insulin requiring Type 2 diabetes: A qualitative study in primary care. J Clin Nurs, 2018; 27(9-10): 2120–2131. doi: 10.1111/jocn.14369
    [14] Kohnert K D, Augstein P, Zander E, et al. Glycemic variability correlates strongly with postprandial beta-cell dysfunction in a segment of type 2 diabetic patients using oral hypoglycemic agents. Diabetes Care, 2009; 32(6): 1058–1062. doi: 10.2337/dc08-1956
    [15] Inker L A, Schmid C H, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med, 2012; 367(1): 20–29. doi: 10.1056/NEJMoa1114248
    [16] Kramer C K, Choi H, Zinman B, et al. Determinants of reversibility of β-cell dysfunction in response to short-term intensive insulin therapy in patients with early type 2 diabetes. Am J Physiol Endocrinol Metab, 2013; 305(11): E1398–E1407. . doi: 10.1152/ajpendo.00447.2013
    [17] Retnakaran R, Shen S, Hanley A J, et al. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring), 2008; 16(8): 1901–1907. doi: 10.1038/oby.2008.307
    [18] Retnakaran R, Qi Y, Goran M I, et al. Evaluation of proposed oral disposition index measures in relation to the actual disposition index. Diabet Med, 2009; 26(12): 1198–1203. doi: 10.1111/j.1464-5491.2009.02841.x
    [19] Matsuda M, DeFronzo R A. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999; 22(9): 1462–1470. doi: 10.2337/diacare.22.9.1462
    [20] Matthews D R, Hosker J P, Rudenski A S, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985; 28(7): 412–419. doi: 10.1007/BF00280883
    [21] Defronzo R A, Tripathy D, Schwenke D C, et al. Prediction of diabetes based on baseline metabolic characteristics in individuals at high risk. Diabetes Care, 2013; 36(11): 3607–3612. doi: 10.2337/dc13-0520
    [22] Beck R W, Bergenstal R M, Riddlesworth T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes care, 2019; 42(3): 400–405. doi: 10.2337/dc18-1444
    [23] Klatman E L, Jenkins A J, Ahmedani M Y, et al. Blood glucose meters and test strips: global market and challenges to access in low-resource settings. Lancet Diabetes Endocrinol, 2019; 7(2): 150–160. doi: 10.1016/S2213-8587(18)30074-3
    [24] Weinstock R S, Braffett B H, McGuigan P, et al. Self-monitoring of blood glucose in youth-onset type 2 diabetes: results from the TODAY study. Diabetes Care, 2019; 42(5): 903–909. doi: 10.2337/dc18-1854
    [25] Schnell O, Klausmann G, Gutschek B, et al. Impact on diabetes self-management and glycemic control of a new color-based SMBG meter. J Diabetes Sci Technol, 2017; 11(6): 1218–1225. doi: 10.1177/1932296817706376
    [26] Zhang Y, Dai J, Han X, et al. Glycemic variability indices determined by self-monitoring of blood glucose are associated with β-cell function in Chinese patients with type 2 diabetes. Diabetes Res Clin Pract, 2020; 164: 108152. doi: 10.1016/j.diabres.2020.108152
    [27] Kilpatrick E S, Rigby A S, Goode K, et al. Relating mean blood glucose and glucose variability to the risk of multiple episodes of hypoglycaemia in type 1 diabetes. Diabetologia, 2007; 50(12): 2553-2561. doi: 10.1007/s00125-007-0820-z
    [28] Schnell O, Barnard K, Bergenstal R, et al. Clinical utility of SMBG: recommendations on the use and reporting of SMBG in clinical research. Diabetes Care, 2015; 38(9): 1627–1633. doi: 10.2337/dc14-2919
    [29] Swisa A, Glaser B, Dor Y. Metabolic stress and compromised identity of pancreatic beta cells. Front Genet, 2017; 8: 21.
    [30] Veres A, Faust A L, Bushnell H L, et al. Charting cellular identity during human in vitro β-cell differentiation. Nature, 2019; 569(7756): 368–373. doi: 10.1038/s41586-019-1168-5
    [31] Sun J, Ni Q, Xie J, et al. β-Cell dedifferentiation in patients with T2D with adequate glucose control and nondiabetic chronic pancreatitis. J Clin Endocrinol Metab, 2019; 104(1): 83–94. doi: 10.1210/jc.2018-00968
    [32] Wang Z, York N W, Nichols C G, et al. Pancreatic β-cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab, 2014; 19(5): 872–882. doi: 10.1016/j.cmet.2014.03.010
    [33] Murata M, Adachi H, Oshima S, et al. Glucose fluctuation and the resultant endothelial injury are correlated with pancreatic β-cell dysfunction in patients with coronary artery disease. Diabetes Res Clin Pract, 2017; 131: 107–115. doi: 10.1016/j.diabres.2017.07.007
    [34] Wu N, Shen H, Liu H, et al. Acute blood glucose fluctuation enhances rat aorta endothelial cell apoptosis, oxidative stress and pro-inflammatory cytokine expression in vivo. Cardiovasc Diabetol, 2016; 15(1): 109. doi: 10.1186/s12933-016-0427-0
    [35] Kahn S E, Prigeon R L, McCulloch D K, et al. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes, 1993; 42: 1663-1667. doi: 10.2337/diab.42.11.1663
    [36] Wang T, Lu J, Shi L, et al. Association of insulin resistance and β-cell dysfunction with incident diabetes among adults in China: a nationwide, population-based, prospective cohort study. Lancet Diabetes Endocrinol, 2020; 8(2): 115–124. doi: 10.1016/S2213-8587(19)30425-5
    [37] Keane K N, Cruzat V F, Carlessi R, et al. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. Oxid Med Cell Longev, 2015; 2015: 181643.
    [38] Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy on β-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet, 2008; 371(9626): 1753–1760. doi: 10.1016/S0140-6736(08)60762-X
    [39] Ma M, Liu H, Yu J. Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids Health Dis, 2020; 19(1): 121. doi: 10.1186/s12944-020-01303-w
    [40] Fiorentino T V, Succurro E, Marini M A, et al. HDL cholesterol is an independent predictor of β-cell function decline and incident type 2 diabetes: A longitudinal study. Diabetes Metab Res Rev, 2020; 36(4): e3289. doi: 10.1002/dmrr.3289
    [41] Rutti S, Ehses J A, Sibler R A, et al. Low and high-density lipoproteins modulate function, apoptosis and proliferation of primary human and murine pancreatic beta cells. Endocrinology, 2009; 150: 4521–4530. doi: 10.1210/en.2009-0252
    [42] Young K A, Maturu A, Lorenzo C, et al. The triglyceride to high-density lipoprotein choles-terol (TG/HDL-C) ratio as a predictor of insulin resistance, b-cell function, and diabetes in His-panics and African Americans. J Diabetes Complications, 2019; 33: 118–122. doi: 10.1016/j.jdiacomp.2018.10.018
    [43] Ochoa-Rosales C, Portilla-Fernandez E, Nano J, et al. Epigenetic link between statin therapy and type 2 diabetes. Diabetes Care, 2020; 43(4): 875–884. doi: 10.2337/dc19-1828
    [44] Yang Y M, Shin B C, Son C, et al. An analysis of the associations between gender and metabolic syndrome components in Korean adults: a national cross-sectional study. BMC Endocr Disord, 2019; 19(1): 67. doi: 10.1186/s12902-019-0393-0
    [45] Arslanian S, Bacha F, Grey M, et al. Evaluation and management of youth-onset type 2 diabetes: a position statement by the American Diabetes Association. Diabetes Care, 2018; 41(12): 2648–2668. doi: 10.2337/dci18-0052
    [46] Hope S V, Knight B A, Shields B M, et al. Random non-fasting C-peptide: bringing robust assessment of endogenous insulin secretion to the clinic. Diabet Med, 2016; 33(11): 1554–1558. doi: 10.1111/dme.13142
    [47] Arslanian S, El Ghormli L, Bacha F, et al. Adiponectin, insulin sensitivity, β-cell function, and racial/ethnic disparity in treatment failure rates in TODAY. Diabetes Care, 2017; 40(1): 85–93. doi: 10.2337/dc16-0455
  • fzm-3-4-242_ESM.pdf
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  177
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 录用日期:  2023-02-07
  • 网络出版日期:  2024-01-29

目录

    /

    返回文章
    返回