[1] |
Rai M, Breitner S, Huber V, et al. Temporal variation in the association between temperature and cause-specific mortality in 15 German cities. Environ Res, 2023; 229: 115668. doi: 10.1016/j.envres.2023.115668
|
[2] |
Brychta R J, Chen K Y. Cold-induced thermogenesis in humans. Eur J Clin Nutr, 2017; 71(3): 345–352. doi: 10.1038/ejcn.2016.223
|
[3] |
Yau W W, Yen P M. Thermogenesis in adipose tissue activated by thyroid hormone. Int J Mol Sci, 2020; 21(8): 3020. doi: 10.3390/ijms21083020
|
[4] |
Tabuchi C, Sul H S. Signaling pathways regulating thermogenesis. Front Endocrinol (Lausanne), 2021; 12: 595020. doi: 10.3389/fendo.2021.595020
|
[5] |
Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol, 2016; 64(5): 1176–1186. doi: 10.1016/j.jhep.2016.01.025
|
[6] |
Pant M, Bal N C, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab, 2016; 27(12): 881–892. doi: 10.1016/j.tem.2016.08.006
|
[7] |
Maldonado E, Rojas D A, Urbina F, et al. The use of antioxidants as potential co-adjuvants to treat chronic chagas disease. Antioxidants (Basel), 2021; 10(7): 1022. doi: 10.3390/antiox10071022
|
[8] |
Zorov D B, Juhaszova M, Sollott S J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 2014; 94(3): 909–950. doi: 10.1152/physrev.00026.2013
|
[9] |
Awad E M, Khan S Y, Sokolikova B, et al. Cold induces reactive oxygen species production and activation of the NF-kappa B response in endothelial cells and inflammation in vivo. J Thromb Haemost, 2013; 11(9): 1716–1726. doi: 10.1111/jth.12357
|
[10] |
Guo J, Nie J, Chen Z, et al. Cold exposure-induced endoplasmic reticulum stress regulates autophagy through the SIRT2/FoxO1 signaling pathway. J Cell Physiol, 2022; 237(10): 3960–3970. doi: 10.1002/jcp.30856
|
[11] |
Luo B, Shi H, Zhang K, et al. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. Ecotoxicol Environ Saf, 2019; 168: 9–16. doi: 10.1016/j.ecoenv.2018.10.064
|
[12] |
Vasilijević A, Buzadzić B, Korać A, et al. The effects of cold acclimation and nitric oxide on antioxidative enzymes in rat pancreas. Comp Biochem Physiol C Toxicol Pharmacol, 2007; 145(4): 641–647. doi: 10.1016/j.cbpc.2007.02.013
|
[13] |
Liu Y, Xue N, Zhang B, et al. Cold stress induced liver injury of mice through activated NLRP3/Caspase-1/GSDMD pyroptosis signaling pathway. Biomolecules, 2022; 12(7): 927. doi: 10.3390/biom12070927
|
[14] |
Liao Y, Tong L, Tang L, et al. The role of cold-inducible RNA binding protein in cell stress response. Int J Cancer, 2017; 141(11): 2164–2173. doi: 10.1002/ijc.30833
|
[15] |
Luo Y, Zhang Y, Han X, et al. Akkermansia muciniphila prevents cold-related atrial fibrillation in rats by modulation of TMAO induced cardiac pyroptosis. EBioMedicine, 2022; 82: 104087. doi: 10.1016/j.ebiom.2022.104087
|
[16] |
Wang Z, Xu J H, Mou J J, et al. Novel ultrastructural findings on cardiac mitochondria of huddling Brandt's voles in mild cold environment. Comp Biochem Physiol A Mol Integr Physiol, 2020; 249: 110766. doi: 10.1016/j.cbpa.2020.110766
|
[17] |
Liu Y, Liu Y, Jin H, et al. Cold stress-induced brain injury regulates TRPV1 channels and the PI3K/AKT signaling pathway. Brain Res, 2017; 1670: 201–207. doi: 10.1016/j.brainres.2017.06.025
|
[18] |
Schneider A, Panagiotakos D, Picciotto S, et al. AIRGENE study group. Air temperature and inflammatory responses in myocardial infarction survivors. Epidemiology, 2008; 19(3): 391–400. doi: 10.1097/EDE.0b013e31816a4325
|
[19] |
Ridker P M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation, 2003; 107(3): 363–369. doi: 10.1161/01.CIR.0000053730.47739.3C
|
[20] |
Halonen J I, Zanobetti A, Sparrow D, et al. Associations between outdoor temperature and markers of inflammation: a cohort study. Environ Health, 2010; 9: 42. doi: 10.1186/1476-069X-9-42
|
[21] |
Ni W, Breitner S, Nikolaou N, et al. Effects of short- and medium- term exposures to lower air temperature on 71 novel biomarkers of subclinical inflammation: results from the KORA F4 study. Environ Sci Technol, 2023; 57(33): 12210–12221. doi: 10.1021/acs.est.3c00302
|
[22] |
Eimonte M, Paulauskas H, Daniuseviciute L, et al. Residual effects of short-term whole-body cold-water immersion on the cytokine profile, white blood cell count, and blood markers of stress. Int J Hyperthermia, 2021; 38(1): 696–707. doi: 10.1080/02656736.2021.1915504
|
[23] |
Teng T, Yang H, Xu T, et al. Activation of inflammatory networks in the lungs caused by chronic cold stress is moderately attenuated by glucose supplementation. Int J Mol Sci, 2022; 23(18): 10697. doi: 10.3390/ijms231810697
|
[24] |
Sánchez-Gloria J L, Carbó R, Buelna-Chontal M, et al. Cold exposure aggravates pulmonary arterial hypertension through increased miR-146a-5p, miR-155-5p and cytokines TNF-α, IL-1β, and IL-6. Life Sci, 2021; 287: 120091. doi: 10.1016/j.lfs.2021.120091
|
[25] |
Indo H P, Davidson M, Yen H C, et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion, 2007; 7(1-2): 106–118. doi: 10.1016/j.mito.2006.11.026
|
[26] |
Wang F, Zhang S, Jeon R, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine, 2018; 30: 303–316. doi: 10.1016/j.ebiom.2018.02.009
|
[27] |
Xu B, Lian S, Li S Z, et al. GABAB receptor mediate hippocampal neuroinflammation in adolescent male and female mice after cold expose. Brain Res Bull, 2018; 142: 163–175. doi: 10.1016/j.brainresbull.2018.07.011
|
[28] |
Hardbower D M, Asim M, Luis P B, et al. Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci USA, 2017; 114(5): E751–E760.
|
[29] |
Lu J, Fu S, Dai J, et al. Integrated metabolism and epigenetic modifications in the macrophages of mice in responses to cold stress. J Zhejiang Univ Sci B, 2022; 23(6): 461–480. doi: 10.1631/jzus.B2101091
|
[30] |
Becker M, Serr I, Salb V K, et al. Short-term cold exposure supports human Treg induction in vivo. Mol Metab, 2019; 28: 73–82. doi: 10.1016/j.molmet.2019.08.002
|
[31] |
Kälin S, Becker M, Ott V B, et al. A Stat6/Pten Axis links regulatory T cells with adipose tissue function. Cell Metab, 2017; 26(3): 475–492. doi: 10.1016/j.cmet.2017.08.008
|
[32] |
Thakur M, Evans B, Schindewolf M, et al. Neutrophil extracellular traps affecting cardiovascular health in infectious and inflammatory diseases. Cells, 2021; 10(7): 1689. doi: 10.3390/cells10071689
|
[33] |
Silvestre-Roig C, Braster Q, Ortega-Gomez A, et al. Neutrophils as regulators of cardiovascular inflammation. Nat Rev Cardiol, 2020; 17(6): 327–340. doi: 10.1038/s41569-019-0326-7
|
[34] |
Bäck M, Yurdagul A Jr, Tabas I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat Rev Cardiol, 2019; 16(7): 389–406.
|
[35] |
Gu X, Liu D, Hao N, et al. The synergy between diurnal temperature range and calcium concentration help to predict hospital mortality in patients with acute myocardial infarction. Sci Rep, 2022; 12(1): 15527. doi: 10.1038/s41598-022-18816-2
|
[36] |
Bui T M, Wiesolek H L, Sumagin R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J Leukoc Biol, 2020; 108(3): 787–799. doi: 10.1002/JLB.2MR0220-549R
|
[37] |
Shu H, Peng Y, Hang W, et al. The role of CD36 in cardiovascular disease. Cardiovasc Res, 2022; 118(1): 115–129. doi: 10.1093/cvr/cvaa319
|
[38] |
Pan H, Xue C, Auerbach B J, et al. Single-Cell genomics reveals a novel cell state during smooth muscle cell phenotypic switching and potential therapeutic targets for atherosclerosis in mouse and human. Circulation, 2020; 142(21): 2060–2075. doi: 10.1161/CIRCULATIONAHA.120.048378
|
[39] |
Li H, Cao Z, Wang L, et al. Macrophage subsets and death are responsible for atherosclerotic plaque formation. Front Immunol, 2022; 13: 843712. doi: 10.3389/fimmu.2022.843712
|
[40] |
Cui N, Hu M, Khalil R A. Biochemical and biological attributes of Matrix Metalloproteinases. Prog Mol Biol Transl Sci, 2017; 147: 1–73.
|
[41] |
Shah P K. Role of inflammation and metalloproteinases in plaque disruption and thrombosis. Vasc Med, 1998; 3(3): 199–206. doi: 10.1177/1358836X9800300304
|
[42] |
Yurdagul A Jr. Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler Thromb Vasc Biol, 2022; 42(4): 372–380. doi: 10.1161/ATVBAHA.121.316233
|
[43] |
Fang S, Sun S, Cai H, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1+/- mice display increases atherosclerotic plaque stability. Theranostics, 2021; 11(19): 9358–9375. doi: 10.7150/thno.62797
|
[44] |
Adachi Y, Ueda K, Nomura S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat Commun, 2022; 13(1): 5117. doi: 10.1038/s41467-022-32658-6
|
[45] |
Angueira A R, Sakers A P, Holman C D, et al. Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab, 2021; 3(4): 469–484. doi: 10.1038/s42255-021-00380-0
|
[46] |
Gu P, Hui X, Zheng Q, et al. Mitochondrial uncoupling protein 1 antagonizes atherosclerosis by blocking NLRP3 inflammasome-dependent interleukin-1β production. Sci Adv, 2021; 7(50): eabl4024. doi: 10.1126/sciadv.abl4024
|
[47] |
Ma L, Li C, Lian S, et al. Procyanidin B2 alleviates liver injury caused by cold stimulation through Sonic hedgehog signalling and autophagy. J Cell Mol Med, 2021; 25(16): 8015–8027. doi: 10.1111/jcmm.16733
|
[48] |
Wei H, Zhang R, Su Y, et al. Effects of acute cold stress after long-term cold stimulation on antioxidant status, heat shock proteins, inflammation and immune cytokines in broiler heart. Front Physiol, 2018; 9: 1589. doi: 10.3389/fphys.2018.01589
|
[49] |
Jain K, Suryakumar G, Prasad R, et al. Myocardial ER chaperone activation and protein degradation occurs due to synergistic, not individual, cold and hypoxic stress. Biochimie, 2013; 95(10): 1897–908. doi: 10.1016/j.biochi.2013.06.018
|
[50] |
Kong X, Liu H, He X, et al. Unraveling the mystery of cold stress-induced myocardial injury. Front Physiol, 2020; 11: 580811. doi: 10.3389/fphys.2020.580811
|
[51] |
Zhang Y, Hu N, Hua Y, et al. Cardiac overexpression of metallothionein rescues cold exposure-induced myocardial contractile dysfunction through attenuation of cardiac fibrosis despite cardiomyocyte mechanical anomalies. Free Radic Biol Med, 2012; 53(2): 194–207. doi: 10.1016/j.freeradbiomed.2012.04.005
|
[52] |
Cong P, Liu Y, Liu N, et al. Cold exposure induced oxidative stress and apoptosis in the myocardium by inhibiting the Nrf2-Keap1 signaling pathway. BMC Cardiovasc Disord, 2018; 18(1): 36. doi: 10.1186/s12872-018-0748-x
|
[53] |
Lv H, He Y, Wu J, et al. Chronic cold stress-induced myocardial injury: effects on oxidative stress, inflammation and pyroptosis. J Vet Sci, 2023; 24(1): e2. doi: 10.4142/jvs.22185
|
[54] |
Wang X, Li X, Ong H, et al. MG53 suppresses NF-κB activation to mitigate age-related heart failure. JCI Insight, 2021; 6(17): e148375. doi: 10.1172/jci.insight.148375
|
[55] |
Abe H, Tanada Y, Omiya S, et al. NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6Chi monocytes in pressure-overloaded hearts. Sci Signal. 2021; 14(704) : eabe4932. doi: 10.1126/scisignal.abe4932
|
[56] |
Chen F, Chen Z Q, Zhong G L, et al. Nicorandil inhibits TLR4/MyD88/NF-κB/NLRP3 signaling pathway to reduce pyroptosis in rats with myocardial infarction. Exp Biol Med (Maywood), 2021; 246(17): 1938-1947. doi: 10.1177/15353702211013444
|
[57] |
Lei Q, Yi T, Chen C. NF-κB-Gasdermin D (GSDMD) axis couples oxidative stress and NACHT, LRR and PYD Domains-Containing Protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit, 2018; 24: 6044–6052. doi: 10.12659/MSM.908529
|
[58] |
Crosswhite P, Chen K, Sun Z. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling. Hypertension, 2014; 64(5): 1141–1150. doi: 10.1161/HYPERTENSIONAHA.114.03791
|
[59] |
Wang X, Skelley L, Wang B, et al. AAV-based RNAi silencing of NADPH oxidase gp91(phox)attenuates cold-induced cardiovascular dysfunction. Hum Gene Ther. 2012; 23(9): 1016–1026. doi: 10.1089/hum.2012.078
|
[60] |
Chen P G, Sun Z. AAV Delivery of Endothelin-1 shRNA attenuates cold-induced hypertension. Hum Gene Ther, 2017; 28(2): 190–199. doi: 10.1089/hum.2016.047
|
[61] |
Han J, Zhang Y, Ge P, et al. Exosome-derived CIRP: an amplifier of inflammatory diseases. Front Immunol, 2023; 14: 1066721. doi: 10.3389/fimmu.2023.1066721
|