留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Network pharmacology-based approach for exploring the biotargets and mechanisms of vitamin A for the treatment of diabetic foot ulcers

Xiaowei Wan Qiuhai Qin Ruitang Xie Xin Li Min Su

Xiaowei Wan, Qiuhai Qin, Ruitang Xie, Xin Li, Min Su. Network pharmacology-based approach for exploring the biotargets and mechanisms of vitamin A for the treatment of diabetic foot ulcers[J]. Frigid Zone Medicine, 2023, 3(3): 186-192. doi: 10.2478/fzm-2023-0023
Citation: Xiaowei Wan, Qiuhai Qin, Ruitang Xie, Xin Li, Min Su. Network pharmacology-based approach for exploring the biotargets and mechanisms of vitamin A for the treatment of diabetic foot ulcers[J]. Frigid Zone Medicine, 2023, 3(3): 186-192. doi: 10.2478/fzm-2023-0023

Network pharmacology-based approach for exploring the biotargets and mechanisms of vitamin A for the treatment of diabetic foot ulcers

doi: 10.2478/fzm-2023-0023
More Information
  • Figure  1.  Flowcharts illustrating the network pharmacology approaches and procedures used in the present study to reveal the therapeutic targets and mechanistic pathways of vitamin A against diabetic foot ulcers

    Figure  2.  The Venn diagram (left) displaying the 66 intersection targets for vitamin A action against diabetic foot ulcers and protein-protein interaction network plot for the targets (right)

    Figure  3.  Identification of 18 core targets for VA action against diabetic foot ulcers: JUN, MAPK1, THRB, MAPK14, MTNR1B, CXCR3, ESR1, AR, HDAC1, IL-10, CNR1, DRD2, EGFR, ADRA2A, CCND1, RXRB, RARA, and RXRA

    Figure  4.  Bioinformatics analyses revealing the top biological processes associated with vitamin A action against diabetic foot ulcers

    Figure  5.  KEGG analysis of the signaling pathways for the pharmacological effects of vitamin A against diabetic foot ulcers

    Figure  6.  The network visualization of the interactions linking VA to its potential targets, signaling pathways, and diabetic foot ulcers

  • [1] Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018; 14(2): 88–98. doi: 10.1038/nrendo.2017.151
    [2] Yang L, Shao J, Bian Y, et al. Prevalence of type 2 diabetes mellitus among inland residents in China (2000–2014): A meta-analysis. J Diabetes Investig, 2016; 7(6): 845–852. doi: 10.1111/jdi.12514
    [3] Malemute C L, Shultz J A, Ballejos M, et al. Goal setting education and counseling practices of diabetes educators. Diabetes Educ, 2011; 37(4): 549–563. doi: 10.1177/0145721711410718
    [4] Wheeler L A, Wheeler M L, Ours P, et al. Evaluation of computer-based diet education in persons with diabetes mellitus and limited educational background. Diabetes Care, 1985; 8(6): 537–544. doi: 10.2337/diacare.8.6.537
    [5] Armstrong D G, Boulton A J M, Bus S A. Diabetic foot ulcers and their recurrence. N Engl J Med, 2017; 376(24): 2367–2375. doi: 10.1056/NEJMra1615439
    [6] Sen P, Demirdal T. Evaluation of mortality risk factors in diabetic foot infections. Int Wound J, 2020; 17(4): 880–889. doi: 10.1111/iwj.13343
    [7] Lim J Z, Ng N S, Thomas C. Prevention and treatment of diabetic foot ulcers. J R Soc Med, 2017; 110(3): 104–109. doi: 10.1177/0141076816688346
    [8] Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci, 2018; 1411(1): 153–165. doi: 10.1111/nyas.13569
    [9] Braun L R, Fisk W A, Lev-Tov H, et al. Diabetic foot ulcer: an evidence-based treatment update. Am J Clin Dermatol, 2014; 15(3): 267–281. doi: 10.1007/s40257-014-0081-9
    [10] Pena G, Kuang B, Cowled P, et al. Micronutrient status in diabetic patients with foot ulcers. Adv Wound Care (New Rochelle), 2020; 9(1): 9–15. doi: 10.1089/wound.2019.0973
    [11] Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr, 2017; 57(11): 2404–2411. doi: 10.1080/10408398.2015.1060940
    [12] Iskakova M, Karbyshev M, Piskunov A, et al. Nuclear and extranuclear effects of vitamin A. Can J Physiol Pharmacol, 2015; 93(12): 1065–1075. doi: 10.1139/cjpp-2014-0522
    [13] Blaner W S. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Pharmacol Ther, 2019; 197: 153–178. doi: 10.1016/j.pharmthera.2019.01.006
    [14] Olsen T, Blomhoff R. Retinol, retinoic acid, and retinol-binding protein 4 are differentially associated with cardiovascular disease, type 2 diabetes, and obesity: An overview of human studies. Adv Nutr, 2020; 11(3): 644–666. doi: 10.1093/advances/nmz131
    [15] Chen Q, Feng Y, Yang H, et al. A vitamin pattern diet is associated with decreased risk of gestational diabetes mellitus in chinese women: Results from a case control study in Taiyuan, China. J Diabetes Res, 2019; 2019: 5232308.
    [16] Rostamkhani H, Mellati A A, Tabaei B S, et al. Association of serum zinc and vitamin A levels with severity of retinopathy in type 2 diabetic patients: a cross-sectional study. Biol Trace Elem Res, 2019; 192(2): 123–128. doi: 10.1007/s12011-019-01664-z
    [17] Nogales C, Mamdouh Z M, List M, et al. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci, 2022; 43(2): 136–150. doi: 10.1016/j.tips.2021.11.004
    [18] Liu J, Guo C, Wang Y, et al. Preclinical insights into fucoidan as a nutraceutical compound against perfluorooctanoic acid-associated obesity via targeting endoplasmic reticulum stress. Front Nutr, 2022; 9: 950130. doi: 10.3389/fnut.2022.950130
    [19] Liang X, Pan Q, Liao Y, et al. In silico analysis and experimental validation to exhibit anti-nasopharyngeal carcinoma effects of plumbagin, an anti-cancer compound. J Sci Food Agric, 2022; 102(12): 5460–5467. doi: 10.1002/jsfa.11900
    [20] Pundir S, Martin M J, O'Donovan C, et al. UniProt tools. Curr Protoc Bioinformatics, 2016; 53: 1.29.1–1.29.15.
    [21] Fonseka P, Pathan M, et al. FunRich enables enrichment analysis of OMICs datasets. J Mol Biol, 2021; 433(11): 166747. doi: 10.1016/j.jmb.2020.166747
    [22] Szklarczyk D, Gable A L, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019; 47(D1): D607–D613. doi: 10.1093/nar/gky1131
    [23] Doncheva N T, Morris J H, Gorodkin J, et al. Cytoscape StringApp: network analysis and visualization of proteomics data. J Proteome Res, 2019; 18(2): 623–632. doi: 10.1021/acs.jproteome.8b00702
    [24] Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci, 2018; 1411(1): 153–165. doi: 10.1111/nyas.13569
    [25] Sanz-Corbalán I, Lázaro-Martínez J L, García-Morales E, et al. Advantages of early diagnosis of diabetic neuropathy in the prevention of diabetic foot ulcers. Diabetes Res Clin Pract, 2018; 146: 148–154. doi: 10.1016/j.diabres.2017.12.018
    [26] Zinder R, Cooley R, Vlad L G, et al. Vitamin A and wound healing. Nutr Clin Pract, 2019; 34(6): 839–849. doi: 10.1002/ncp.10420
    [27] Bar-El Dadon S, Reifen R. Vitamin A and the epigenome. Crit Rev Food Sci Nutr, 2017; 57(11): 2404–2411. doi: 10.1080/10408398.2015.1060940
    [28] Pena G, Kuang B, Cowled P, et al. Micronutrient status in diabetic patients with foot ulcers. Adv Wound Care (New Rochelle), 2020; 9(1): 9–15. doi: 10.1089/wound.2019.0973
    [29] Schonthaler H B, Guinea-Viniegra J, Wagner E F. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann Rheum Dis, 2011; 70(Suppl 1): i109–12. doi: 10.1136/ard.2010.140533
    [30] Lang J, Yang C, Liu L, et al. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers. Exp Cell Res, 2021; 403(1): 112550. doi: 10.1016/j.yexcr.2021.112550
    [31] Xu S, Weng X, Wang Y, et al. Screening and preliminary validation of T lymphocyte immunoregulation associated long non coding RNAs in diabetic foot ulcers. Mol Med Rep, 2019; 19(3): 2368–2376.
    [32] Laimer M. MAPK14 as candidate for genetic susceptibility to diabetic foot ulcer. Br J Dermatol, 2017; 177(6): 1482–1483. doi: 10.1111/bjd.15990
    [33] Meng W, Veluchamy A, Hébert H L, et al. A genome-wide association study suggests that MAPK14 is associated with diabetic foot ulcers. Br J Dermatol, 2017; 177(6): 1664–1670. doi: 10.1111/bjd.15787
    [34] Izquierdo M C, Shanmugarajah N, Lee S X, et al. Hepatic FoxOs link insulin signaling with plasma lipoprotein metabolism through an apolipoprotein M/sphingosine-1-phosphate pathway. J Clin Invest, 2022; 132(7): e146219. doi: 10.1172/JCI146219
    [35] Liao S, Lin X, Mo C. Integrated analysis of circRNA-miRNA-mRNA regulatory network identifies potential diagnostic biomarkers in diabetic foot ulcer. Noncoding RNA Res, 2020; 5(3): 116–124. doi: 10.1016/j.ncrna.2020.07.001
    [36] Fang Z, Deng Q, Hu H, et al. Characteristics of immunogenic and tolerogenic dendritic cells within the arterial wall in atherosclerosis and in vitro. Int J Clin Exp Med, 2014; 7(12): 4846–4856.
  • 加载中
图(6)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  125
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 录用日期:  2022-09-08
  • 网络出版日期:  2023-09-08

目录

    /

    返回文章
    返回