留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silicon dioxide nanoparticles inhibit the effects of cold exposure on metabolism and inflammatory responses in brown adipocytes

Yongqiang Zhang Li Zhang Shuai Wu Guanyu Zhang Xiaodie Wei Xi Li Danfeng Yang

Yongqiang Zhang, Li Zhang, Shuai Wu, Guanyu Zhang, Xiaodie Wei, Xi Li, Danfeng Yang. Silicon dioxide nanoparticles inhibit the effects of cold exposure on metabolism and inflammatory responses in brown adipocytes[J]. Frigid Zone Medicine, 2023, 3(2): 97-104. doi: 10.2478/fzm-2023-0013
Citation: Yongqiang Zhang, Li Zhang, Shuai Wu, Guanyu Zhang, Xiaodie Wei, Xi Li, Danfeng Yang. Silicon dioxide nanoparticles inhibit the effects of cold exposure on metabolism and inflammatory responses in brown adipocytes[J]. Frigid Zone Medicine, 2023, 3(2): 97-104. doi: 10.2478/fzm-2023-0013

Silicon dioxide nanoparticles inhibit the effects of cold exposure on metabolism and inflammatory responses in brown adipocytes

doi: 10.2478/fzm-2023-0013
More Information
  • Figure  1.  Image of SiO2 NPs by transmission electron microscopy

    Figure  2.  The oil red O staining of brown adipocytes

    The brown adipocytes were isolated from the brown adipose tissue, induced in differentiation medium, and stained with oil red O.

    Figure  3.  Adipogenic gene expression determined by qRT-PCR in brown adipocytes

    (A) PRDM16. (B) Dio2. (C) PGC-1a. (D) UCP1. Values represent mean ± SEM, and significant differences compared with controls are indicated by *P < 0.05, **P < 0.01.

    Figure  4.  Expression of inflammatory cytokines determined by qRT-PCR in brown adipocytes

    (A) IL-1β. (B) IL-6. (C) TNF-α. Values represent mean ± SEM, and significant differences compared with controls are indicated by *P < 0.05, **P < 0.01.

    Figure  5.  Effect of cold exposure or/and SiO2 NPs on the expression of secretion-related genes in brown adipocytes

    (A) ADPN. (B) Leptin. Values represent mean ± SEM, and significant differences compared with controls are indicated by **P < 0.01.

  • [1] Lu S L, Feng M, Yao Z K. Physicochemical characterization and cytotoxicity of ambient coarse, fine, and ultrafine particulate matters in Shanghai atmosphere. Atmos Environ, 2011; 45(3): 736-744. doi: 10.1016/j.atmosenv.2010.09.020
    [2] Malfatti M A, Palko H A, Kuhn E A, et al. Determining the pharmacokinetics and long-term biodistribution of SiO2 nanoparticles in vivo using accelerator mass spectrometry. Nano Lett, 2012; 12(11): 5532-5538. doi: 10.1021/nl302412f
    [3] Li J Q, Li L, Chen H Q, et al. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Sci Rep, 2014; 4: 4275. doi: 10.1038/srep04275
    [4] Kang G S, Gillespie P A, Gunnison A, et al. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ Health Perspect, 2011; 119(2): 176-181. doi: 10.1289/ehp.1002508
    [5] Burch W M. Passage of inhaled particles into the blood circulation in humans. Circulation, 2002; 106(20): 141-141.
    [6] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 2005; 113(7): 823-839. doi: 10.1289/ehp.7339
    [7] Oberdorster G, Sharp Z, Atudorei V, et al. Extra pulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A, 2002; 65(20): 1531-1543. doi: 10.1080/00984100290071658
    [8] Simeonova P P, Erdely A. Engineered nanoparticle respiratory exposure and potential risks for cardiovascular toxicity: predictive tests and biomarkers. Inhal Toxicol, 2009; 21 Suppl 1: 68-73.
    [9] Wen D. Nanofuel as a potential secondary energy carrier. Energy Environ Sci, 2010; 3: 591-600. doi: 10.1039/b906384f
    [10] Zou Y, Wang Y, Zhang Y, et al. Arctic sea ice, Eurasia snow, and extreme winter haze in China. Sci Adv, 2017; 3(3): e1602751. doi: 10.1126/sciadv.1602751
    [11] Dai L, Zanobetti A, Koutrakis P, et al. Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis. Environ Health Perspect, 2014; 122(8): 837-842. doi: 10.1289/ehp.1307568
    [12] Fruijtier-Poelloth C. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material. Toxicology, 2012; 294(2-3): 61-79. doi: 10.1016/j.tox.2012.02.001
    [13] Jasnic N, Djordjevic J, Djurasevic S, et al. Specific regulation of ACTH secretion under the influence of low and high ambient temperature-the role of catecholamines and vasopressin. J Thermal Biology, 2012; 37: 469-474. doi: 10.1016/j.jtherbio.2012.04.003
    [14] Zhang Y, Lin Y, Li X, et al. Silica dioxide nanoparticles combined with cold exposure induce stronger systemic inflammatory response. Environ Sci Pollut Res, 2017; 24(1): 291-298. doi: 10.1007/s11356-016-7649-2
    [15] Smorlesi A, Frontini A, Giordano A, et al. The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev, 2012; 13(Suppl 2): 83-96.
    [16] Zhang Y, Li X, Lin Y, et al. The combined effects of silicon dioxide nanoparticles and cold air exposure on the metabolism and infllammatory responses in white adipocytes. Toxicol Res, 2017; 6(5): 705-710. doi: 10.1039/C7TX00145B
    [17] Lin Y, Li X, Zhang L, et al. Inhaled SiO2 nanoparticles blunt cold exposure induced WAT browning and metabolism activation in white and brown adipose tissue. Toxicol Res, 2016; 5(4): 1106-1114. doi: 10.1039/C6TX00015K
    [18] Ricquier D. Respiration uncoupling and metabolism in the control of energy expenditure. Proc Nutr Soc, 2005; 64(1): 47-52. doi: 10.1079/PNS2004408
    [19] Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev, 2004; 84(1): 277-359. doi: 10.1152/physrev.00015.2003
    [20] Seale P, Kajimura S, Yang W, et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab, 2007; 6(1): 38-54. doi: 10.1016/j.cmet.2007.06.001
    [21] Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/ skeletal muscle switch. Nature, 2008; 454(7207): 961-967. doi: 10.1038/nature07182
    [22] Puigserver P, Wu Z, Park C W, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 1998; 92(6): 829-839. doi: 10.1016/S0092-8674(00)81410-5
    [23] Wu Z, Boss O. Targeting PGC-1 alpha to control energy homeostasis. Expert Opin Ther Targets, 2007; 11(10): 1329-1338. doi: 10.1517/14728222.11.10.1329
    [24] Obregon M J. Thyroid hormone and adipocyte differentiation. Thyroid, 2008; 18(2): 185-195. doi: 10.1089/thy.2007.0254
    [25] Bianco A C, Kim B W. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest, 2006; 116(10): 2571-2579. doi: 10.1172/JCI29812
    [26] Xu H, Barnes G T, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 2003; 112(12): 1821-1830. doi: 10.1172/JCI200319451
    [27] Lumeng C N, DelProposto J B, Westcott D J, et al. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes, 2008; 57(12): 3239-3246. doi: 10.2337/db08-0872
    [28] Olefsky J M, Glass C K. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol, 2010; 72: 219-246. doi: 10.1146/annurev-physiol-021909-135846
    [29] Xu H, Sethi J K, Hotamisligil G S. Transmembrane tumor necrosis factor TNF-alpha inhibits adipocyte differentiation by selectively activating TNF receptor 1. J Biol Chem, 1999; 274(37): 26287-26295. doi: 10.1074/jbc.274.37.26287
    [30] Galic S, Oakhill J S, Steinberg G R. Adipose tissue as an endocrine organ. Mol Cell Endocrinol, 2010; 316(2): 129-139. doi: 10.1016/j.mce.2009.08.018
    [31] Ye L, Wu J, Cohen P, et al. Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci U S A, 2013; 110(30): 12480-12485. doi: 10.1073/pnas.1310261110
    [32] Enerback S. Human brown adipose tissue. Cell Metab, 2010; 11(4): 248-252. doi: 10.1016/j.cmet.2010.03.008
    [33] Nedergaard J, Cannon B. The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab, 2010; 11(4): 268-272. doi: 10.1016/j.cmet.2010.03.007
    [34] Bourdon J A, Halappanavar S, Saber A T, et al. Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci, 2012; 127(2): 474-484. doi: 10.1093/toxsci/kfs119
    [35] Li M, Li Q, Yang G, et al. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism. J Allergy Clin Immunol, 2011; 128(3): 626-634. doi: 10.1016/j.jaci.2011.04.032
    [36] Crosswhite P, Sun Z J. Ribonucleic acid interference knockdown of interleukin 6 attenuates cold-induced hypertension. Hypertension, 2010; 55(6): 1484-1491. doi: 10.1161/HYPERTENSIONAHA.109.146902
    [37] Friedman J M. Leptin at 14 y of age: an ongoing story. Am J Clin Nutr, 2009; 89(3): 973S-979S. doi: 10.3945/ajcn.2008.26788B
    [38] Rosen E D, Spiegelman B M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006; 444(7121): 847-853. doi: 10.1038/nature05483
    [39] Coppack S W. Pro-inflammatory cytokines and adipose tissue. Proc Nutr Soc, 2001; 60(3): 349-356. doi: 10.1079/PNS2001110
    [40] Hardardottir I, Gruenfeld C, Feingold K R. Effects of endotoxin and cytokines on lipid metabolism. Curr Opin Lipidol, 1994; 5(3): 207-215. doi: 10.1097/00041433-199405030-00008
    [41] Granneman J G, Burnazi M, Zhu Z, et al. White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab, 2003; 285(6): E1230-E1236. doi: 10.1152/ajpendo.00197.2003
  • 加载中
图(5)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  155
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-25
  • 录用日期:  2023-02-07
  • 网络出版日期:  2023-05-17

目录

    /

    返回文章
    返回