-
Abstract: Plateau is characterized by low oxygen, low pressure, strong radiation, cold and dryness, among which low oxygen is the main factor that affects the normal life activities of human body. Altitude hypoxia leads to significant changes in the metabolic characteristics of drugs in vivo, which in turn affects the efficacy and adverse actions of drugs. This paper summarizes the present situation of rational drug use in plateau area and pinpoints the existing problems. Meanwhile, we posit the strategies and measures for realizing rational and precise pharmacotherapy of plateau residents. First, we need to acquire a panoramic view of differential and relative pharmacokinetics and pharmacodynamics in between plateau area and plain area by carrying out comparative studies on drug metabolisms and on comprehensive drug efficacies and mechanisms. Second, we must apply the findings from basic research to clinical practice and formulate guidelines and recommendations of drug use for plateau habitants. Finally, we should eventually achieve precise and individualized drug use for plateau habitants based on their characteristic etiology and pathogenesis.
-
Key words:
- plateau /
- hypoxia /
- rational drug use /
- pharmacokinetics
-
Table 1. Comparison of pharmacokinetics parameters of furosemide in healthy volunteers in plain, fast-moving plateau and long-staying plateau[9]
Parameters Whole blood Blood plasma Plain Fast-moving plateau Long-staying plateau Plain Fast-moving plateau Long-staying plateau K (h-1) 0.76 ± 0.24 0.70 ± 0.20 0.61 ± 0.17 0.82 ± 0.26 0.71 ± 0.27 0.57 ± 0.16 t1/2 (h) 0.97 ± 0.22 1.07 ± 0.29 1.24 ± 0.45 0.90 ± 0.20 1.13 ± 0.47 1.32 ± 0.52 Vd (L/kg) 10.44 ± 3.70 9.28 ± 1.87 10.50 ± 5.18 5.05 ± 1.89 4.60 ± 1.01 5.18 ± 2.27 CL (L/[h·kg]) 0.39 ± 0.09 0.41 ± 0.08 0.42 ± 0.30 0.18 ± 0.04 0.20 ± 0.05 0.19 ± 0.11 AUC (μg/[h·mL]) 5.22 ± 1.26 4.96 ± 0.99 5.56 ± 2.35 10.18 ± 2.39 9.23 ± 1.91 11.22 ± 4.52 Cmax(μg/mL-1) 2.29 ± 0.91 1.89 ± 0.72 1.89 ± 0.92 3.93 ± 1.39 3.54 ± 1.35 3.70 ± 1.82 tmax (h) 1.54 ± 0.66 1.38 ± 0.57 1.58 ± 0.79 1.58 ± 0.64 1.38 ± 0.57 1.58 ± 0.79 MRT (h) 9.47 ± 4.12 8.61 ± 4.16 12.97 ± 12.00 10.65 ± 4.44 9.62 ± 4.08 13.89 ± 10.37 Table 2. Comparison of pharmacokinetics parameters of acetazolamide in healthy volunteers in plain, fast-moving plateau and long-staying plateau[10]
Parameters Whole blood Blood plasma Plain Fast-moving plateau Long-staying plateau Plain Fast-moving plateau Long-staying plateau K (h-1) 0.06 ± 0.02 0.07 ± 0.02 0.08 ± 0.06 0.12 ± 0.02 0.16 ± 0.03 0.13 ± 0.02 t1/2 (h) 12.0 ± 3.0 10.2 ± 2.2 8.8 ± 5.9 6.0 ± 0.9 4.4 ± 0.8 5.3 ± 0.9 Vd (L/kg) 0.30 ± 0.12 0.24 ± 0.03 0.26 ± 0.08 0.39 ± 0.06 0.32 ± 0.08 0.44 ± 0.05 CL [L/(h·kg)] 0.29 ± 0.13 0.27 ± 0.07 0.31 ± 0.16 0.74 ± 0.09 0.82 ± 0.15 0.96 ± 0.18 AUC [μg/(h·mL)] 270.9 ± 107.0 264.2 ± 57.3 263.1 ± 147.3 94.1 ± 12.4 85.7 ± 10.2 70.9 ± 12.5 MRT (h) 19.6 ± 4.4 16.5 ± 3.2 18.5 ± 8.1 9.8 ± 1.1 7.7 ± 1.3 9.1 ± 1.4 Table 3. Changes of Pharmacokinetic Parameters of Drugs under Hypoxia
Drugs Species MRT Cmax t1/2 Ke AUC Vd CL References Ibuprofen Rat ↑ — ↑ — — ↑ ↓ [14] Diazepam Rat ↑ ↑ — — ↑ — — [15] Propranolol Rat ↑ ↑ ↑ — ↑ ↓ ↓ [16] Norfloxacin Rat ↑ ↓ ↓ — ↓ ↑ ↑ [17] Acetylsalicylic acid Rabbit ↑ — ↑ ↓ — ↓ ↓ [18] Gentamicin Rabbit ↑ — ↑ ↓ — ↑ ↓ [18] Phenobarbital Rabbit ↑ — ↑ ↓ — ↓ ↓ [18] Phenytoin Rabbit — — — — ↑ — ↓ [19] Theophylline Rabbit — — — — — — ↓ [20] Salbutamol Rabbit — — ↑ — — ↑ — [21] Diltiazem Dog — — — — — ↓ ↓ [22] Caffeine Human — — ↓ ↑ ↓ — ↑ [23] Indocyanine green Human — — — — ↓ ↑ ↑ [23] Acetazolamide Human ↓ — — — ↓ ↓ ↑ [24] Meperidine Human ↑ — ↑ — — — ↓ [25] Neurolithium Human ↑ — ↑ — — ↑ ↓ [26] Furosemide Human — ↓ — — ↓ ↓ ↓ [27] Prednisolone Human — ↑ — — ↑ ↓ ↓ [28] Sulfamethoxazole Human — — ↑ — ↑ — ↓ [29] Lidocaine Human ↑ — ↑ — — ↑ ↓ [30] Table 4. Changes of expression and activity of drug metabolizing enzymes under hypoxia
Enzyme Species mRNA levels Protein expression Activity References CYP1A1 Rabbit ↓ ↓ ↓ [31] CYP1A2 Rat ↓ ↓ ↓ [32] CYP2B4 Rabbit ↓ ↓ ↓ [33] CYP2C5 Rabbit ↓ ↓ ↓ [33] CYP2C9 Rat ↓ ↓ ↑ [32] CYP2C16 Rabbit ↓ ↓ ↓ [33] CYP2C19 Rat ↓ ↓ ↑ [32] CYP2D6 Rat ↑ ↑ ↑ [32] CYP2E1 Rat ↓ ↓ ↓ [34] CYP3A1 Rat ↓ ↓ ↓ [34] CYP3A4 Human ↓ ↓ ↓ [35] CYP3A6 Rabbit ↑ ↑ ↑ [31] NAT2 Rat ↓ ↓ ↓ [32] Table 5. Changes of expression and activity of drug transporters under hypoxia
Object Drug transporter mRNA levels Protein expression Activity References Liver MDR1 ↑ ↑ ↑ [36] MRP2 ↑ ↑ ↑ [37] PEPT1 ↑ ↑ ↑ [38] OATP1B1 ↑ ↑ ↑ [38] OAT1 ↑ ↑ ↑ [38] OCT1 ↑ ↑ ↑ [38] OATP2 — — — [39] BCRP — — — [39] Intestine MRP2 ↑ ↑ ↑ [37] PEPT1 ↑ ↑ ↑ [38] OATP1B1 ↑ ↑ ↑ [38] OAT1 ↑ ↑ ↑ [38] OCT1 ↑ ↑ ↑ [38] MDR1 ↓ ↓ ↓ [40] Kidney MDR1 ↑ ↑ ↑ [37] PEPT1 ↑ ↑ ↑ [37] OAT1 ↑ ↑ ↑ [38] OCT1 ↑ ↑ ↑ [38] MRP2 ↓ ↓ ↓ [37] OATP1B1 — — — [38] Heart MDR1 ↓ ↓ ↓ [36] -
[1] West J B. High-altitude medicine. Am J Respir Crit Care Med, 2012; 186: 1229-1237. doi: 10.1164/rccm.201207-1323CI [2] Li X Y, Gao F, Li Z Q, et al. Comparison of the pharmacokinetics of sulfamethoxazole in male Chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: an open-labeled, controlled, prospective study. Clin Ther, 2009; 31: 2744-2754. doi: 10.1016/j.clinthera.2009.11.019 [3] Luo B F, Wang R, Li W B, et al. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed Pharmacother, 2017; 89: 1078-1085. doi: 10.1016/j.biopha.2017.02.092 [4] Zhang J H, Zhang J M, Wang R, et al. Effects of gut microbiota on drug metabolism and guidance for rational drug use under hypoxic conditions at high altitudes. Curr Drug Metab, 2019; 20(2): 155-165. doi: 10.2174/1389200219666181019145159 [5] Zhou X, Nian Y, Qiao Y, et al. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude. Curr Drug Metab, 2018; 19(11): 960-969. doi: 10.2174/1389200219666180529112913 [6] Li W B, Wang R, Xie H, et al. Changes of pathological and physiological indicators affecting drug metabolism in rats after acute exposure to high altitude. Exp Ther Med, 2014; 9(1): 98-104. [7] Xie Y, Hua F D, Xiang D W, et al. The metabolic effect of gut microbiota on drugs. Drug Metab Rev, 2020; 52(1): 139-156. doi: 10.1080/03602532.2020.1718691 [8] Zhang J H, Chen Y Y, Sun Y M, et al. Plateau hypoxia attenuates the metabolic activity of intestinal flora to enhance the bioavailability of nifedipine. Drug Deliv, 2018; 25(1): 1175-1181. doi: 10.1080/10717544.2018.1469687 [9] Arancibia A, Nella Gai M, Paulos C, et al. Effects of high altitude exposure on the pharmacokinetics of furosemide in healthy volunteers. Int J Clin Pharm Ther, 2004; 42(6): 314-320. doi: 10.5414/CPP42314 [10] Ritschel W A, Paulos C, Arancibia A, et al. Pharmacokinetics of acetazolamide in healthy volunteers after short and long term exposure to high altitude. J Clin Pharm, 1998; 38(6): 533-539. doi: 10.1002/j.1552-4604.1998.tb05791.x [11] Zhang J H, Wang R. Changes in CYP3A4 enzyme expression and biochemical markers under acute hypoxia affect the pharmacokinetics of sildenafifil. Front Physiol, 2022; 13: 755769. doi: 10.3389/fphys.2022.755769 [12] Wang R, Sun Y H, Yin Q, et al. The effects of metronidazole on Cytochrome P450 activity and expression in rats after acute exposure to high altitude of 4300m. Biomed Pharmacolther, 2016; 85: 296-302. [13] Li W B, Li J, Wang R, et al. MDR1 will play a key role in pharmacokinetic changes under hypoxia at high altitude and its potential regulatory networks. Drug Metab Rev, 2015; 47: 191-198. doi: 10.3109/03602532.2015.1007012 [14] Gola S, Gupta A, Keshri G K, et al. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J Pharm Biomed Anal, 2016; 121: 114-122. doi: 10.1016/j.jpba.2016.01.018 [15] Gong W, Liu S, Xu P, et al. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats. Molecules, 2015; 20(4): 6901-6912. doi: 10.3390/molecules20046901 [16] Wenbin L, Rong W, Hua X, et al. Effects on pharmacokinetics of propranolol and other factors in rats after acute exposure to high altitude at 4010 m. Cell Biochem Biophys, 2015; 72(1): 27-36. doi: 10.1007/s12013-014-0397-3 [17] Luo B, Wang R, Li W, et al. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300 m. Biomed Pharmacother, 2017; 89: 1078-1085. doi: 10.1016/j.biopha.2017.02.092 [18] Vij A G, Kishore K, Dey J. Effect of intermittent hypobaric hypoxia on efficacy & clearance of drugs. Indian J Med Res, 2012; 135(2): 211-216. [19] du Souich P, Varin F, Courteau H. Effect of hypercapnia and/or hypoxemia and metabolic acidosis on kinetics and concentrations of phenytoin in the cerebrospinal fluid of conscious rabbits. Neuropharmacology, 1986; 25(8): 857-862. doi: 10.1016/0028-3908(86)90011-0 [20] Letarte L, du Souich P. Influence of hypercapnia and/or hypoxemia and metabolic acidosis on theophylline kinetics in the conscious rabbit. Am Rev Respir Dis, 1984; 129(5): 762-766. doi: 10.1164/arrd.1984.129.5.762 [21] Perreault S, Saunier C, Ong H, et al. Influence of hypoxia and hypercapnia on the kinetics and hypokaliaemic effect of salbutamol in the rabbit. Xenobiotica, 1995; 25(3): 271-281. doi: 10.3109/00498259509061851 [22] Souich P, Hartemann D, Saunier C. Effect of acute and chronic moderate hypoxia on diltiazem kinetics and metabolism in the dog. Pharmacology, 1993; 47(6): 378-385. doi: 10.1159/000139121 [23] Kamimori G H, Eddington N D, Hoyt R W, et al. Effects of altitude (4300m) on the pharmacokinetics of caffeine and cardio-green in humans. Eur J Clin Pharmacol, 1995; 48(2): 167-170. [24] Ritschel W A, Paulos C, Arancibia A, et al. Pharmacokinetics of acetazolamide in healthy volunteers after short-and long term exposure to high altitude. J Clin Pharmacol, 1998; 38(6): 533-539. doi: 10.1002/j.1552-4604.1998.tb05791.x [25] Ritschel WA, Paulos C, Arancibia A, et al. Pharmacokinetics of meperidine in healthy volunteers after short-and long term exposure to high altitude. J Clin Pharmacol, 1996; 36(7): 610-616. doi: 10.1002/j.1552-4604.1996.tb04225.x [26] Arancibia A, Paulos C, Chávez J, et al. Pharmacokinetics of lithium in healthy volunteers after exposure to high altitude. Int J Clin Pharmacol Ther, 2003; 41(5): 200-206. doi: 10.5414/CPP41200 [27] Arancibia A, Nella Gai M, Paulos C, et al. Effects of high altitude exposure on the pharmacokinetics of furosemide in healthy volunteers. Int J Clin Pharmacol Ther, 2004; 42(6): 314-320. doi: 10.5414/CPP42314 [28] Arancibia A, Gai M N, Chávez J, et al. Pharmacokinetics of prednisolone in man during acute and chronic exposure to high altitude. Int J Clin Pharmacol Ther, 2005; 43(2): 85-91. doi: 10.5414/CPP43085 [29] Li X Y, Gao F, Li Z Q, et al. Comparison of the pharmacokinetics of sulfamethoxazole in male chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: An open-label, controlled, prospective study. Clin Ther, 2009; 31(11): 2744-2754. doi: 10.1016/j.clinthera.2009.11.019 [30] Zhang J, Zhu J, Yao X, et al. Pharmacokinetics of lidocaine hydrochloride metabolized by CYP3A4 in Chinese Han volunteers living at low altitude and in native han and tibetan Chinese volunteers living at high altitude. Pharmacology, 2016; 97(3-4): 107-113. doi: 10.1159/000443332 [31] Kurdi J, Maurice H, El-Kadi A O, et al. Effect of hypoxia alone or combined with inflammation and 3-methylcholanthrene on hepatic cytochrome P450 in conscious rabbits. Br J Pharmacol, 1999; 128: 365-373. doi: 10.1038/sj.bjp.0702795 [32] Li X Y, Wang X, Li Y, et al. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology, 2014; 93: 76-83. doi: 10.1159/000358128 [33] Fradette C, Batonga J, Teng S, et al. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab Dispos, 2007; 35: 765-771. doi: 10.1124/dmd.106.013508 [34] Li X, Wang X J, Li Y P, et al. The activity, protein, and mRNA expression of CYP2E1 and CYP3A1 in rats after exposure to acute and chronic high altitude hypoxia. High Alt Med Biol, 2014; 15: 491-496. doi: 10.1089/ham.2014.1026 [35] Zhang J L, Li X Y. A review of drug metabolism under hypoxia environment at high altitude. Acta Pharm Sin, 2015; 50: 1073-1079. [36] Dopp J M, Moran J J, Abel N J, et al. Influence of intermittent hypoxia on myocardial and hepatic P-glycoprotein expression. Pharmacotherapy, 2009; 29: 365-372. doi: 10.1592/phco.29.4.365 [37] Luo B F, Yin Q, Wang R, et al. Effect of hypoxia on expressions of MDR1 and MRP2 in rats. J South Med Univ, 2016; 36: 1169-1174. [38] Jin T, Luo B F, Zhang X Y, et al. Difference in effects of hypoxia on gene expressions of six drug transporters in rats. Pharm J Chin PLA, 2017; 33: 297-301. [39] Fradette C, Batonga J, Teng S, et al. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab Dispos, 2007; 35: 765-771. doi: 10.1124/dmd.106.013508 [40] Li W B, Luo B F, Wang R, et al. Changes of P-gp expression in rats' small intestine and effects on uptake of levofloxacin after acute exposure to hypoxia. Acta Pharm Sin, 2016; 51: 1412-1416.
计量
- 文章访问数: 248
- HTML全文浏览量: 110
- PDF下载量: 11
- 被引次数: 0