留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pharmacodynamics of frigid zone plant Taxus cuspidata S. et Z. against skin melanin deposition, oxidation, inflammation and allergy

Yang Shi Ling Liu Heyang Sun Chen Chen Jing Feng Yongchao Chen Yuan Lin Philipp Kopylov Qi Wang Yong Zhang

Yang Shi, Ling Liu, Heyang Sun, Chen Chen, Jing Feng, Yongchao Chen, Yuan Lin, Philipp Kopylov, Qi Wang, Yong Zhang. Pharmacodynamics of frigid zone plant Taxus cuspidata S. et Z. against skin melanin deposition, oxidation, inflammation and allergy[J]. Frigid Zone Medicine, 2023, 3(1): 42-52. doi: 10.2478/fzm-2023-0007
Citation: Yang Shi, Ling Liu, Heyang Sun, Chen Chen, Jing Feng, Yongchao Chen, Yuan Lin, Philipp Kopylov, Qi Wang, Yong Zhang. Pharmacodynamics of frigid zone plant Taxus cuspidata S. et Z. against skin melanin deposition, oxidation, inflammation and allergy[J]. Frigid Zone Medicine, 2023, 3(1): 42-52. doi: 10.2478/fzm-2023-0007

Pharmacodynamics of frigid zone plant Taxus cuspidata S. et Z. against skin melanin deposition, oxidation, inflammation and allergy

doi: 10.2478/fzm-2023-0007
More Information
  • Figure  1.  Anti skin melanin deposition effect of three Taxus chinensis extracts (N = 6)

    (A) Representative images of guinea pigs in each group after 28 days of administration; (B) Melanin content of back skin of guinea pigs in each group after 28 days of administration; Data represent the mean ± SE; **P < 0.01; ***P < 0.001 vs. Control group; #P < 0.05 vs. Taxus chinensis essential oil group.

    Figure  2.  Anti skin oxidation effect of three Taxus chinensis extracts (N = 3-5)

    (A)Representative images of Kunming mice in each group after 7 days of drug administration; (B) SOD content in the skin tissue homogenates of mice in each group; (C)GSH content of in the skin tissue homogenates of mice in each group; (D) (E) mRNA level of SOD and GPX4 in the skin tissue of each group were tested; (F) Protein relative level of GPX4 in the skin tissue of each group were tested; Data represent the mean ± SE; *P < 0.05; **P < 0.01; ***P < 0.001 vs. Control group; #P < 0.05; ##P < 0.01; ###P < 0.001 vs. DNCB group; DNCB, dinitrochlorobenzene; SOD, superoxide dismutase; GPX4, Glutathione Peroxidase 4; GSH, glutathione.

    Figure  3.  Anti skin inflammation effect of three Taxus chinensis extracts (N ≥ 3)

    (A) Representative ears photos of mice in each group after 30 minutes of inflammation induction; (B) Ear swelling rate of mice in each group after 30 minutes of inflammation induction; (C-G) Swelling rate of mice toes at different time points post inflammation induction; Data represent the mean ± SE; *P < 0.05; **P < 0.01; ***P < 0.001 vs. Control group; #P < 0.05 vs. Taxus chinensis essential oil group.

    Figure  4.  Anti skin allergy effect of three Taxus chinensis extracts (N = 5-7)

    (A)Representative skin photos of mice in each group after 4-AP injected to induce allergy; (B) Pathological changes of skin tissue were observed by HE staining in each group (bar = 20 μm); (C) Body licking times of mice in each group within 10 minutes after allergic stimulation; (D) Histamine content in the skin tissue homogenates of mice in each group; (E) (F) mRNA level of SOD and GPX4 in the skin tissue of each group were tested; Data represent the mean ± SE; *P < 0.05; **P < 0.01; ***P < 0.001 vs. Control group; #P < 0.05; ##P < 0.01; ###P < 0.001 vs. 4-AP group; 4-AP, 4-aminopyridine; DNCB, dinitrochlorobenzene; HE, hematoxylin and eosin; SOD, superoxide dismutase; GPX4, Glutathione Peroxidase 4; TNF, tumor necrosis factor; IL, Interleukin.

  • [1] Sutterby E, Thurgood P, Baratchi S, et al. Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin. Small, 2020; 16(39): e2002515. doi: 10.1002/smll.202002515
    [2] Choi S Y, Kim Y C. Whitening effect of black tea water extract on brown Guinea pig skin. Toxicol Res, 2011; 27(3): 153-160. doi: 10.5487/TR.2011.27.3.153
    [3] Rachmin I, Ostrowski S M, Weng Q Y, et al. Topical treatment strategies to manipulate human skin pigmentation. Adv Drug Deliv Rev, 2020; 153: 65-71. doi: 10.1016/j.addr.2020.02.002
    [4] Lee R, Ko H J, Kim K, et al. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles, 2020; 9(1): 1703480. doi: 10.1080/20013078.2019.1703480
    [5] Kurban R S, Bhawan J. Histologic changes in skin associated with aging. J Dermatol Surg Oncol, 1990; 16(10): 908-914. doi: 10.1111/j.1524-4725.1990.tb01554.x
    [6] WULF H C, SANDBY-Møller J, KOBAYASI T, et al. Skin aging and natural photoprotection. Micron, 2004; 35(3): 185-191. doi: 10.1016/j.micron.2003.11.005
    [7] Pillaiyar T, Manickam M, Jung S H. Downregulation of melanogenesis: drug discovery and therapeutic options. Drug Discov Today, 2017; 22(2): 282-298. doi: 10.1016/j.drudis.2016.09.016
    [8] Kammeyer A, Luiten R M. Oxidation events and skin aging. Ageing Res Rev, 2015; 21: 16-29. doi: 10.1016/j.arr.2015.01.001
    [9] Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: antioxidative strategies. Front Med, 2020; 14(5): 583-600. doi: 10.1007/s11684-019-0729-1
    [10] Lee S M, Lee S H, Jung Y, et al. FABP3-mediated membrane lipid saturation alters fluidity and induces ER stress in skeletal muscle with aging. Nat Commun, 2020; 11(1): 5661. doi: 10.1038/s41467-020-19501-6
    [11] Folgueras A R, Freitas-Rodriguez S, Velasco G, et al. Mouse models to disentangle the hallmarks of human aging. Circ Res, 2018; 123(7): 905-924. doi: 10.1161/CIRCRESAHA.118.312204
    [12] Celebi Sozener Z, Cevhertas L, Nadeau K, et al. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol, 2020; 145(6): 1517-1528. doi: 10.1016/j.jaci.2020.04.024
    [13] Zhou Y, Qin S, Sun M, et al. Measurement of organ-specific and acute-phase blood protein levels in early lyme disease. J Proteome Res, 2020; 19(1): 346-359. doi: 10.1021/acs.jproteome.9b00569
    [14] Gu Y, Han J, Jiang C, et al. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev, 2020; 59: 101036. doi: 10.1016/j.arr.2020.101036
    [15] Brunner P M, Guttman-Yassky E, Leung D Y. The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. J Allergy Clin Immunol, 2017; 139(4S): S65-S76.
    [16] Bai X Y, Liu P, Chai Y W, et al. Artesunate attenuates 2, 4-dinitrochlorobenzene-induced atopic dermatitis by down-regulating Th17 cell responses in BALB/c mice. Eur J Pharmacol, 2020; 874: 173020. doi: 10.1016/j.ejphar.2020.173020
    [17] Leung D Y M, Berdyshev E, Goleva E. Cutaneous barrier dysfunction in allergic diseases. J Allergy Clin Immunol, 2020; 145(6): 1485-1497. doi: 10.1016/j.jaci.2020.02.021
    [18] Weng H B, Han W K, Xiong Y W, et al. Taxus chinensis ameliorates diabetic nephropathy through down-regulating TGF-β 1/Smad pathway. Chin J Nat Med, 2018; 16(2): 90-96.
    [19] Liu H S, Gao Y H, Liu L H, et al. Inhibitory effect of 13 taxane diterpenoids from Chinese yew (Taxus chinensis var. mairei) on the proliferation of HeLa cervical cancer cells. Biosci Biotechnol Biochem, 2016; 80(10): 1883-1886. doi: 10.1080/09168451.2016.1194182
    [20] Aoki Y, Tanigawa T, Abe H, et al. Melanogenesis inhibition by an oolong tea extract in b16 mouse melanoma cells and UV-induced skin pigmentation in brownish guinea pigs. Biosci Biotechnol Biochem, 2007; 71(8): 1879-1885. doi: 10.1271/bbb.70099
    [21] Shi C, Yao Z, Xu J, et al. Effects of Gingko Extract (EGb761) on oxidative damage under different conditions of serum supply. J Bioenerg Biomembr, 2009; 41(1): 61-69. doi: 10.1007/s10863-009-9197-7
    [22] Cao J, Wang Y, Hu S, et al. Kaempferol ameliorates secretagogue-induced pseudo-allergic reactions via inhibiting intracellular calcium fluctuation. J Pharm Pharmacol, 2020; 72(9): 1221-1231. doi: 10.1111/jphp.13312
    [23] Ding X J, Zhang Z Y, Jin J, et al. Salidroside can target both P4HB-mediated inflammation and melanogenesis of the skin. Theranostics, 2020; 10(24): 11110-11126. doi: 10.7150/thno.47413
    [24] Elansary H O, Szopa A, Kubica P, et al. Phenolic compounds of catalpa speciosa, taxus cuspidate, and magnolia acuminata have antioxidant and anticancer activity. Molecules, 2019; 24(3): 412. doi: 10.3390/molecules24030412
    [25] Li N, Pan Z, Zhang D, et al. Chemical components, biological activities, and toxicological evaluation of the fruit (aril) of two precious plant species from genus taxus. Chem Biodivers, 2017; 14(12)10.1002/cbdv. 201700305.
    [26] Weng H B, Han W K, Xiong Y W, et al. Taxus chinensis ameliorates diabetic nephropathy through down-regulating TGF-β1/Smad pathway. Chin J Natura Med, 2018; 16(2): 90-96. doi: 10.1016/S1875-5364(18)30034-7
    [27] Hearing V J. Biochemical control of melanogenesis and melanosomal organization. J Investig Dermatol Symp Proc, 1999; 4(1): 24-28. doi: 10.1038/sj.jidsp.5640176
    [28] Hearing V J, JimÉNez M. Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res, 1989; 2(2): 75-85. doi: 10.1111/j.1600-0749.1989.tb00166.x
    [29] Shimogaki H, Tanaka Y, Tamai H, et al. In vitro and in vivo evaluation of ellagic acid on melanogenesis inhibition. Int J Cosmet Sci, 2000; 22(4): 291-303. doi: 10.1046/j.1467-2494.2000.00023.x
    [30] Cabanes J, Chazarra S, Garcia-Carmona F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J Pharm Pharmacol, 1994; 46(12): 982-985.
    [31] Zou Y, Wang A, Shi M, et al. Analysis of redox landscapes and dynamics in living cells and in vivo using genetically encoded fluorescent sensors. Nat Protoc, 2018; 13(10): 2362-2386. doi: 10.1038/s41596-018-0042-5
    [32] Lennicke C, Cochemé H M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol Cell, 2021; 81(18): 3691-3707. doi: 10.1016/j.molcel.2021.08.018
    [33] Kimura Y, Shibuya N, Kimura H. Sulfite protects neurons from oxidative stress. Br J Pharmacol, 2019; 176(4): 571-582. doi: 10.1111/bph.14373
    [34] Pooladanda V, Thatikonda S, Bale S, et al. Nimbolide protects against endotoxin-induced acute respiratory distress syndrome by inhibiting TNF-alpha mediated NF-kappaB and HDAC-3 nuclear translocation. Cell Death Dis, 2019; 10(2): 81. doi: 10.1038/s41419-018-1247-9
    [35] Li H, Horke S, Förstermann U. Oxidative stress in vascular disease and its pharmacological prevention. Trends Pharmacol Sci, 2013; 34(6): 313-319. doi: 10.1016/j.tips.2013.03.007
    [36] Gui T, Luo L, Chhay B, et al. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy. Biomaterials, 2022; 283: 121437. doi: 10.1016/j.biomaterials.2022.121437
    [37] He X Y, Wang M, Liang L W. Study on anti-inflammatory effect of Taxus cuspidate. Anhui Agricul Sci, 2010; 38(02): 908-909.
    [38] Redegeld F A, Yu Y, Kumari S, et al. Non-IgE mediated mast cell activation. Immunol Rev, 2018; 282(1): 87-113.
    [39] Church M K, Kolkhir P, Metz M, et al. The role and relevance of mast cells in urticaria. Immunol Rev, 2018; 282(1): 232-247.
  • 加载中
图(4)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  113
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 录用日期:  2022-05-20
  • 网络出版日期:  2023-02-08

目录

    /

    返回文章
    返回