留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrocardiogram abnormalities and higher body mass index as clinically applicable factors for predicting poor outcome in patients with coronavirus disease 2019

Zhidan Sun Yan Hou Zheng Zhang Benzhi Cai Jinliang Li

Zhidan Sun, Yan Hou, Zheng Zhang, Benzhi Cai, Jinliang Li. Electrocardiogram abnormalities and higher body mass index as clinically applicable factors for predicting poor outcome in patients with coronavirus disease 2019[J]. Frigid Zone Medicine, 2022, 2(4): 251-256. doi: 10.2478/fzm-2022-0032
Citation: Zhidan Sun, Yan Hou, Zheng Zhang, Benzhi Cai, Jinliang Li. Electrocardiogram abnormalities and higher body mass index as clinically applicable factors for predicting poor outcome in patients with coronavirus disease 2019[J]. Frigid Zone Medicine, 2022, 2(4): 251-256. doi: 10.2478/fzm-2022-0032

Electrocardiogram abnormalities and higher body mass index as clinically applicable factors for predicting poor outcome in patients with coronavirus disease 2019

doi: 10.2478/fzm-2022-0032
More Information
  • Figure  1.  AUCs for severe ill COVID-19 (A), poor outcome (B) and medical costs > 14 671.88 Chinese yuan (C) for ECG abnormalities and body-mass index AUC, area under the receiver operating characteristic curves; BMI, body mass index; COVID-19, coronavirus disease 2019; ECG, electrocardiogram.

    Figure  2.  Survival curves of ECG abnormalities (A) and body-mass index (B) BMI, body-mass index; ECG, electrocardiogram.

    Table  1.   The demographics and clinical characteristics of 103 patients with COVID-19

    Demography and clinical characteristic Value
    Age, years 50.40 ± 15.87
    Sex, n (%)
      Male 50(48.5)
      Female 53(51.5)
    Body mass index, kg/m2 24.6 ± 3.68
    Comorbiditiesa (n = 47), n (%)
      Hypertension 34(33.0)
      Diabetes mellitus 12(11.7)
      Cardiovascular diseases 22(21.4)
      Nervous system diseases 2 (1.9)
      Respiratory diseases 2 (1.9)
      Others 9 (8.7)
    ECG abnormalities, n (%) 32(31.1)
    Symptoms on admission, n (%)
      Fever 81(77.88)
      Cough 63(60.58)
      Myalgias 42(40.38)
      Diarrhea 17(16.34)
      Upper airway congestion 44(42.31)
    Presentation values
      White blood cell count, ×109/L 5.38 ± 2.90
      Lymphocyte count, ×109/L 1.29 ± 0.57
      Lymphocyte percentage, % 25.76 ± 10.91
      Alanine aminotransferase, U/L 35.74 ± 87.88
      Aspartate aminotransferase, U/L 39.57 ± 124.10
      Blood urea nitrogen, mmol/L 4.13 ± 3.71
      Creatinine, μmol/L 69.42 ± 128.75
      Cystatin C, mg/L 1.03 ± 0.97
      Creatine Kinase, U/L 151.15 ± 435.97
      Creatine Kinase MB Form, U/L 15.59 ± 21.65
      C-reactive protein, mg/L 16.99 ± 19.75
    Treatment, n (%)
      Single antiviral agent 58(56.3)
      Combined antiviral agents 23(22.3)
    Developing Severe COVID-19, n (%) 17(16.5)
    Poor outcome, n (%)b 7 (6.8)
    Total medical costs, Chinese yuan 14671.88
    a, More than one comorbidity was reported for some patients; b, Mortality, ICU admission or transfer to a superior hospital; ECG, electrocardiogram; COVID-19, coronavirus disease 2019.
    下载: 导出CSV

    Table  2.   Comparisons of risk factors of cardiovascular disease in patients with severe and non-severe COVID-19

    Item Non-severe (n = 89) Severe (n = 14) P value
    Median body mass index, kg/m2* 23.86± 2.96 28.36 ± 4.68 < 0.0001
    Comorbidities, n (%)
      Hypertension 21 (24.42) 13 (76.47) < 0.0001
      Diabetes mellitus 7 (8.14) 5 (29.41) 0.013
      Cardiovascular diseases 12 (13.95) 10 (58.82) < 0.0001
    ECG, n (%) < 0.0001
      Normal 68 (79.07) 3 (17.65)
      Abnormal 18 (20.93) 14 (82.35)
    Myocardial enzymes*
      Aspartate aminotransferase, U/L 26.47 ± 9.51 105.94 ± 303.48 0.296
      Creatine Kinase, U/L 95.44 ± 72.31 432.94 ± 1040.61 0.200
      Creatine Kinase MB Form, U/L 12.47 ± 4.90 31.41 ± 50.41 0.141
    *, values are mean ± SD; COVID-19, coronavirus disease 2019; ECG, electrocardiogram.
    下载: 导出CSV

    Table  3.   Univariate logistic regression evaluating potential predictors of severe COVID-19

    Variable OR 95% CI P Value
    Age, years 1.050 1.012-1.090 0.009
    Sex
      Male Ref.
      Female 0.931 0.328-2.640 0.893
    Median body mass index, kg/m2 1.445 1.178-1.772 0.0004
    Comorbidities
      Hypertension 10.060 2.958-34.206 0.0002
      Diabetes mellitus 4.702 1.284-17.227 0.019
      Cardiovascular diseases 8.810 2.811-27.610 0.0002
      Nervous system diseases
      Respiratory diseases
      Others 1.505 0.285-7.958 0.631
    ECG abnormalities 17.630 4.566-68.062 < 0.0001
    Laboratory test results on admission
      White blood cell count, ×109/L 1.353 1.055-1.734 0.017
      Lymphocyte count, ×109/L 0.084 0.018-0.399 0.002
      Lymphocyte percentage, % 0.882 0.823-0.945 0.0004
      Alanine aminotransferase, U/L 1.005 0.996-1.013 0.264
      Aspartate aminotransferase, U/L 1.033 0.994-1.073 0.096
      Blood urea nitrogen, mmol/L 1.492 1.043-2.136 0.029
      Creatinine, μmol/L 1.018 0.995-1.043 0.129
      Creatine kinase, U/L 1.005 1.000-1.010 0.073
      Creatine kinase MB Form, U/L 1.114 1.005-1.236 0.041
      C-reactive protein, mg/L 1.060 1.027-1.094 0.0003
    Treatment
      Single antiviral agent Ref.
      Combined antiviral agents 2.423 0.512-11.477 0.265
    ECG, electrocardiogram; OR, odds ratio; CI, confidence interval.
    下载: 导出CSV

    Table  4.   Multivariate logistic regression evaluating potential predictors of developing severe COVID-19

    Variable OR 95% CI P Value
    Age, years 1.110 0.969-1.273 0.133
    Median body mass index, kg/m2 2.972 1.037-8.519 0.043
    Comorbidities
      Hypertension 5.137 0.119-222.528 0.395
      Cardiovascular disease 1.347 0.009-211.636 0.908
    ECG abnormalities 52.695 1.709-1624.474 0.023
    Laboratory test results on admission
      Lymphocyte count, ×109/L 3.685 0.032-418.741 0.589
      Lymphocyte percentage, % 0.674 0.435-1.046 0.079
      C-reactive protein, mg/L 1.040 0.957-1.131 0.358
    ECG, electrocardiogram; OR, odds ratio; CI, confidence interval.
    下载: 导出CSV
  • [1] Cui J, Li F, Shi Z L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019; 17(3): 181-192. doi: 10.1038/s41579-018-0118-9
    [2] World Health Organization. Coronavirus disease (COVID-19) situation reports. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/. Accessed
    [3] Grasselli G, Zangrillo A, Zabella A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2. JAMA, 2020; 323(16): 1574-1581. doi: 10.1001/jama.2020.5394
    [4] Huang C L, Wang Y M, Li X W, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395(10223): 497-506. doi: 10.1016/S0140-6736(20)30183-5
    [5] Rashedi J, Poor B M, Asgharzadeh V, et al. Risk factors for COVID-19. Infez Med, 2020; 28(4): 469-474.
    [6] Fresán U, Guevara M, Elía F, et al. Independent role of severe obesity as a risk factor for COVID-19 hospitalization: a Spanish population-based cohort study. Obesity(Silver Spring), 2021; 29(1): 29-37.
    [7] Ehmann L, Simon P, Busse D, et al. Risk of target non-attainment in obese compared to non-obese patients in calculated linezolid therapy. Clin Microbiol Infect, 2020; 26(9): 1222-1228. doi: 10.1016/j.cmi.2020.04.009
    [8] Zhang J J, Cao Y Y, Tan G, et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients. Allergy, 2021; 76(2): 533-550. doi: 10.1111/all.14496
    [9] Gao L, Liang D, Wen X S, et al. Prognostic value of NT-proBNP in patients with severe COVID-19. Respir Res, 2020; 21(1): 83. doi: 10.1186/s12931-020-01352-w
    [10] Bompard F, Monnier H, Saab I, et al. Pulmonary embolism in patients with COVID-19 pneumonia. Eur Respir J, 2020; 56(1): 2001365. doi: 10.1183/13993003.01365-2020
    [11] Petrakis D, Margină D, Tsarouhas K, et al. Obesity-a risk factor for increased COVID-19 prevalence, severity and lethality. Mol Med Rep, 2020; 22(1): 9-19. doi: 10.3892/mmr.2020.11127
    [12] Zhou Y, Chi J, Lv W, et al. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (Covid-19). Diabetes Metab Res Rev, 2021; 37(2): e3377.
    [13] Wirth R, Becker C, Djukic M, et al. COVID-19 in old age-The geriatric perspective. Z Gerontol Geriatr, 2021; 54(2): 152-160. doi: 10.1007/s00391-021-01864-0
    [14] Li X C, Xu S Y, Yu M Q, et al. Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol, 2020; 146(1): 110-118. doi: 10.1016/j.jaci.2020.04.006
    [15] Gao F, Zheng K I, Wang X B, et al. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care, 2020; 43(7): e72-e74. doi: 10.2337/dc20-0682
    [16] Guo T, Fan Y Z, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol, 2020; 5(7): 811-818. doi: 10.1001/jamacardio.2020.1017
    [17] Zeng J H, Wu W B, Qu J X, et al. Cardiac manifestations of COVID-19 in Shenzhen, China. Infection, 2020; 48(6): 861-870. doi: 10.1007/s15010-020-01473-w
    [18] Chen W L, Kuo C D. Characteristics of heart rate variability can predict impending septic shock in emergency department patients with sepsis. Acad Emerg Med, 2007; 14(5): 392-397. doi: 10.1197/j.aem.2006.12.015
    [19] de Castilho F M, Ribeiro A L P, da Silva J L P, et al. Heart rate variability as predictor of mortality in sepsis: A prospective cohort study. PLoS One, 2017; 12(6): e0180060. doi: 10.1371/journal.pone.0180060
    [20] Liu Y, Du X, Chen J, et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID-19. J Infect, 2020; 81(1): e6-e12. doi: 10.1016/j.jinf.2020.04.002
    [21] Pan S W, Shu C C, Feng J Y, et al. Microbiological persistence in patients with mycobacterium avium complex lung disease: the predictors and the impact on radiographic progression. Clin Infect Dis, 2017; 65(6): 927-934. doi: 10.1093/cid/cix479
    [22] Günel C, Kırdar S, Ömürlü İ K, et al. Detection of the epstein-barr virus, human bocavirus and novel KI and KU polyomaviruses in adenotonsillar tissues. Int J Pediatr Otorhinolaryngol, 2015; 79(3): 423-427. doi: 10.1016/j.ijporl.2015.01.007
    [23] Marbus S D, Schweitzer V A, Groeneveld G H, et al. Incidence and costs of hospitalized adult influenza patients in The Netherlands: a retrospective observational study. Eur J Health Econ, 2020; 21(5): 775-785. doi: 10.1007/s10198-020-01172-1
  • 加载中
图(2) / 表(4)
计量
  • 文章访问数:  170
  • HTML全文浏览量:  84
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-09-02

目录

    /

    返回文章
    返回