留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties

Yanyan Liu Yahan Yu Xinyao Wang Guanqun Liu Xinda Yin Yunlong Bai Zhimin Du

Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties[J]. 寒地医学, 2021, 1(2): 85-94. doi: 10.2478/fzm-2021-0011
引用本文: Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties[J]. 寒地医学, 2021, 1(2): 85-94. doi: 10.2478/fzm-2021-0011
Yanyan Liu, Yahan Yu, Xinyao Wang, Guanqun Liu, Xinda Yin, Yunlong Bai, Zhimin Du. Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties[J]. Frigid Zone Medicine, 2021, 1(2): 85-94. doi: 10.2478/fzm-2021-0011
Citation: Yanyan Liu, Yahan Yu, Xinyao Wang, Guanqun Liu, Xinda Yin, Yunlong Bai, Zhimin Du. Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties[J]. Frigid Zone Medicine, 2021, 1(2): 85-94. doi: 10.2478/fzm-2021-0011

Overexpression of microRNA-135b-5p attenuates acute myocardial infarction injury through its antioxidant and anti-apptotic properties

doi: 10.2478/fzm-2021-0011
More Information
  • Figure  1.  MI induced functional and morphological changes in mouse hearts

    (A) M-mode echocardiograms. (B) Ejection fraction and (C) Fractional shortening. (D) TTC staining results. (E) Election microscope images. Scale bars = 500 nm. (F) TUNEL staining results. The mRNA expression of miR-135b (G) in vivo and (I) in vitro. (H) CCK8 assay result. n = 3; *P < 0.05, **P < 0.01, ***P < 0.001 vs. Sham or Ctrl. The data are presented as mean ± SD.

    Figure  2.  Overexpression of miR-135b in transgenic (Tg) mice reverses MI-induced impairments of cardiac function

    (A) The mRNA expression of miR-135b in vitro. (B) M-mode echocardiograms. (C) Ejection fraction and (D) Fractional shortening. (E) TTC staining results. (F) Election microscope images. Scale bars = 500 nm. (G) TUNEL staining results. n = 3; ***P < 0.001 vs. WT, #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT+MI. &&&P < 0.001 vs. Tg+MI. The data are presented as mean ± SD.

    Figure  3.  Forced expression of miR-135b suppresses ROS generation and apoptosis in primary cultured neonatal mouse ventricular cells (NMVCs)

    (A) The mRNA expression of miR-135b in vitro. (B) CCK8 assay result. (C) Flow cytometry results and (D) corresponding statistical result in vitro. (E) ROS generation in vitro. n = 3; *P < 0.05, **P < 0.01, ***P < 0.001 vs. Ctrl or NC, ###P < 0.001 vs. H2O2. The data are presented as mean ± SD.

    Figure  4.  Overexpression of miR-135b alters the expression of apoptosis-related protein regulators in Tg mice

    The mRNA expression of (A) Caspase-3 (B) Bax (C) Bcl-2 and (D) Bax/Bcl-2 mRNA ratio in vitro. The protein expression of (E) Caspase-3 (F) Bax (G) Bcl-2 and (H) Bax/Bcl-2 protein ratio in vitro. n = 3; **P < 0.01, ***P < 0.001 vs. WT, ##P < 0.01, ###P < 0.001 vs. WT+MI. The data are presented as mean ± SD.

    Figure  5.  Forced expression of miR-135b alters the expression of apoptosis-related protein regulators in cultured NMVCs

    The mRNA expression of (A) Caspase-3 (B) Bax (C) Bcl-2 and (D) Bax/Bcl-2 mRNA ratio in vitro. The protein expression of (E) Caspase-3 (F) Bax (G) Bcl-2 and (H) Bax/Bcl-2 protein ratio in vitro. n = 3; *P < 0.05, **P < 0.01, ***P < 0.001 vs. WT, #P < 0.05, ##P < 0.01, ###P < 0.001 vs. WT+MI. The data are presented as mean ± SD.

    Figure  6.  miR-135b represses the expression of TRPV4 both in vivo and in vitro

    (A) The predicted binding site for miR-135b in TRPV4 sequences of humans and mice. (B) The mRNA and (C) protein expression of TRPV4 in vivo. (D) The mRNA and (E) protein expression of TRPV4 in vitro. n = 3; **P < 0.01 vs. WT or Ctrl, #P < 0.05, ##P < 0.01 vs. WT+MI or H2O2. The data are presented as mean ± SD.

  • [1] Friedman P L, Fenoglio J J, Wit A L. Time course for reversal of electrophysiological and ultrastructural abnormalities in subendocardial Purkinje fibers surviving extensive myocardial infarction in dogs. Circ Res, 1975; 36(1): 127-144. doi: 10.1161/01.RES.36.1.127
    [2] Spear J F, Michelson E L, Spielman S R, et al. The origin of ventricular arrhythmias 24 hours following experimental anterior septal coronary artery occlusion. Circulation, 1977; 55(6): 844-852. doi: 10.1161/01.CIR.55.6.844
    [3] Frangogiannis N G. Pathophysiology of myocardial infarction. Compr Physiol, 2015; 5(4): 1841-1875.
    [4] Zhang J, Qiu W, Ma J, et al. miR-27a-5p attenuates hypoxia-induced rat cardiomyocyte injury by inhibiting Atg7. Int J Mol Sci, 2019; 20(10): 2418. doi: 10.3390/ijms20102418
    [5] Sun T, Dong Y H, Du W, et al. The role of microRNAs in myocardial infarction: From molecular mechanism to clinical application. Int J Mol Sci, 2017; 18(4): 745. doi: 10.3390/ijms18040745
    [6] Li A, Yu Y, Ding X, et al. MiR-135b protects cardiomyocytes from infarction through restraining the NLRP3/Caspase-1/IL-1β pathway. Int J Cardiol, 2020; 307(2): 137-145. http://www.sciencedirect.com/science/article/pii/S016752731932176X
    [7] Chen C, Shen H, Huang Q, et al. The circular RNA CDR1as regulates References the proliferation and apoptosis of human cardiomyocytes through the miR- 135a/HMOX1 and miR-135b/HMOX1 axes. Genet Test Mol Biomarkers, 2020; 24(9): 537-548. doi: 10.1089/gtmb.2020.0034
    [8] Grace M S, Bonvini S J, Belvisi M G, et al. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol Ther, 2017; 177: 9-22. doi: 10.1016/j.pharmthera.2017.02.019
    [9] Che H, Xiao G S, Sun H Y, et al. Functional Trpv2 and Trpv4 channels in human cardiac C-Kit progenitor cells. J Cell Mol Med, 2016; 20(6): 1118- 1127. doi: 10.1111/jcmm.12800
    [10] Qi, Y. Li Z, Kong C, et al. Uniaxial cyclic stretch stimulates Trpv4 to induce realignment of human embryonic stem cell-derived cardiomyocytes. J Mol Cell Cardiol, 2015; 87: 65-73. doi: 10.1016/j.yjmcc.2015.08.005
    [11] Zhao, Y, Huang H, Jiang Y, et al. Unusual localization and translocation of Trpv4 protein in cultured ventricular myocytes of the neonatal rat. Eur J Histochem, 2012; 56(3): e32. doi: 10.4081/ejh.2012.e32
    [12] Dong Q, Li J, Wu Q F, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep, 2017; 7(1): 42678. doi: 10.1038/srep42678
    [13] Wu Q F, Qian C, Zhao N, et al. Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis, 2017; 8(5): e2828. doi: 10.1038/cddis.2017.227
    [14] Gao E, Koch W J. A novel and efficient model of coronary artery ligation in the mouse, Methods Mol. Biol, 2013; 1037: 299-311. http://www.ncbi.nlm.nih.gov/pubmed/24029943
    [15] He H, Liu X, Lv L, et al. Calcineurin suppresses AMPKdependent cytoprotective autophagy in cardiomyocytes under oxidative stress, Cell Death Dis, 2014, 5(1): e997. doi: 10.1038/cddis.2013.533
    [16] Lu Q, Zemskov E A, Sun X, et al. Activation of the mechanosensitive Ca2+ channel TRPV4 induces endothelial barrier permeability via the disruption of mitochondrial bioenergetics. Redox Biol, 2021; 38(6): 101785.
    [17] Konstantinidis K, Whelan R S, Kitsis R N. Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol, 2012; 32(7): 1552-1562. doi: 10.1161/ATVBAHA.111.224915
    [18] Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest, 1996; 74(1): 86-107.
    [19] Xie X J, Fan D M, Xi K, et al. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/ STAT3 signaling pathway in mice during sevoflurane anesthesia. Biosci Rep, 2017; 37(3): BSR20170186. doi: 10.1042/BSR20170186
    [20] Zhu H J, Wang D G, Yan J, et al. Up-regulation of microRNA-135a protects against myocardial ischemia/reperfusion injury by decreasing TXNIP expression in diabetic mice. Am J Transl Res, 2015; 7(12): 2661- 2671. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731664/pdf/ajtr0007-2661.pdf
    [21] Adapala R K, Kanugula A K, Paruchuri S, et al. TRPV4 deletion protects heart from myocardial infarction induced adverse remodeling via modulation of cardiac fibroblast differentiation. Basic Res Cardiol, 2020; 115(2): 14. doi: 10.1007/s00395-020-0775-5
    [22] Chaigne S, Cardouat G, Louradour J, et al. Transient receptor potential vanilloid 4 channel participates in mouse ventricular electrical activity. Am J Physiol Heart Circ Physiol, 2021; 320(3), doi: 10.1152/ajpheart.00497.2020.
    [23] Adapala R K, Thoppil R J, Luther D J, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol, 2013; 54: 45-52. doi: 10.1016/j.yjmcc.2012.10.016
    [24] Everaerts W, Zhen X, Ghosh D, et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci USA, 2010; 107(44): 19084-19089. doi: 10.1073/pnas.1005333107
    [25] Thorneloe K S, Cheung M, Bao W, et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med, 2012; 4(159) http://www.onacademic.com/detail/journal_1000038014919010_98ee.html
  • 加载中
图(6)
计量
  • 文章访问数:  525
  • HTML全文浏览量:  202
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 录用日期:  2021-06-15
  • 网络出版日期:  2021-12-22

目录

    /

    返回文章
    返回