留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tridepsides from the endophytic fungus colletotrichum gloeosporioides associated with a toxic medicinal plant tylophora ovata

Sen-Feng Sun Shao Zhu Hai-Yan Cao Yun-Bao Liu Shi-Shan Yu

Sen-Feng Sun, Shao Zhu, Hai-Yan Cao, Yun-Bao Liu, Shi-Shan Yu. Tridepsides from the endophytic fungus colletotrichum gloeosporioides associated with a toxic medicinal plant tylophora ovata[J]. Frigid Zone Medicine, 2021, 1(1): 45-51. doi: 10.2478/fzm-2021-0006
Citation: Sen-Feng Sun, Shao Zhu, Hai-Yan Cao, Yun-Bao Liu, Shi-Shan Yu. Tridepsides from the endophytic fungus colletotrichum gloeosporioides associated with a toxic medicinal plant tylophora ovata[J]. Frigid Zone Medicine, 2021, 1(1): 45-51. doi: 10.2478/fzm-2021-0006

Tridepsides from the endophytic fungus colletotrichum gloeosporioides associated with a toxic medicinal plant tylophora ovata

doi: 10.2478/fzm-2021-0006
More Information
  • Figure  1.  Structures of Compounds 1-7 from Colletotrichum gloeosporioides

    Figure  2.  Major fragment ions in ESI-MS2 of Compounds 1

    Figure  3.  The key HMBC and 1H-1H COSY correlations of Compounds 1 and 3.

    Table  1.   NMR data (600 MHz, methanol-d4) on Compound 1

    Position δH (J in Hz) δC δH (J in Hz) δC
    1 104.5, C 7' 167.2, C
    2 165.0, C 8' 2.13 s 13.1, CH3
    3 6.26 d (1.94) 102.0, CH 9' 2.15 s 10.3, CH3
    4 164.9, C 10' 2.36 s 16.8, CH3
    5 6.35 d (1.94) 113.2, CH 1" 113.2, C
    6 145.0, C 2" 165.0, C
    7 167.6, C 3" 6.70 d (2.30) 109.0, CH
    8 2.65 s 24.8, CH3 4" 155.6, C
    1' 134.0, C 5" 6.66 d (2.30) 116.8, CH
    2' 127.1, C 6" 144.8, C
    3' 150.9, C 7" 170.7, C
    4' 123.3, C 8" 2.61 s 23.7, CH3
    5' 155.2, C -OCH3 3.86 s 62.8, CH3
    6' 127.8, C
    下载: 导出CSV

    Table  2.   NMR data (600 MHz) of Compound 3 in methanol-d4

    Position δHa(J in Hz) δCb
    1 173.8, C
    2 3.53 s 41.2, CH2
    3 126.2, C
    4/8 7.08 d, (8.0) 131.3
    CH2
    5/7 6.74 d, (8.0) 116.3,
    6 CH2
    157.6, C
    1' 169.8, C
    2' 156.9, C
    3' 5.69 q (1.3) 119.0,
    4' 2.14 d (1.3) CH
    1" 2.49 ddd (6.4, 6.4, 1.1) 18.6, CH3
    2" 40.6, CH2
    4.27 t (6.4) 63.2, CH2
    下载: 导出CSV

    Table  3.   The anti-inflammatory activity of Compounds 2 and 3

    Compound Anti-inflammatory activity (10 μM)
    Inhibition rate of NO production (%) Inhibition rate of Cell proliferation (%)
    2 39.34% -10.84%
    3 33.04% 35.92%
    DEX (dexamethasone) 99.99% 2.89%
    下载: 导出CSV
  • [1] Liu Y B, Ding G Z, Li Y, et al. Structures and absolute configurations of penicillactones A–C from an endophytic microorganism, penicillium dangeardii pitt. Org. Lett, 2013; 15: 5206-5209. doi: 10.1021/ol4023485
    [2] Liu Y B, Li Y, Qu J, et al. Eremophilane sesquiterpenes and polyketones produced by an endophytic guignardia fungus from the toxic plant gelsemium elegans. J. Nat. Prod, 2015; 78: 2149-2154. doi: 10.1021/np5009027
    [3] Liu J Y, Zhao X, Liang X X, et al. Dothiorelone derivatives from an endophyte diaporthe pseudomangiferaea inhibit the activation of human lung fibroblasts MRC-5 cells. Fitoterapia, 2018; 127: 7-14. doi: 10.1016/j.fitote.2018.04.009
    [4] Liu Y B, Li Y, Liu Z, et al. Sesquiterpenes from the endophyte glomerella cingulata. J. Nat. Prod, 2017; 80: 2609-2614. doi: 10.1021/acs.jnatprod.7b00054
    [5] Liu Z, Zhao J Y, Sun S F, et al. Sesquiterpenes from an endophytic aspergillus flavus. J. Nat. Prod, 2019; 82: 1063-1071. doi: 10.1021/acs.jnatprod.8b01084
    [6] Zou W X, Meng J C, Lu H, et al. Metabolities of colletorichum gloeosrioides, an endophytic fungus in Artemisia mongolica, J. Nat. Prod, 2000; 63: 1529-1530. doi: 10.1021/np000204t
    [7] Bang S, Lee C, Kim S, et al. Neuroprotective glycosylated cyclic lipodepsipeptides, Colletotrichamides A-E, from a halophyte-associated fungus, Colletotrichu-m gloeosporioides JS419. J. Org. Chem, 2019; 84: 10999-11006. doi: 10.1021/acs.joc.9b01511
    [8] Luo Y P, Zheng C J, Chen G Y, et al. Three new polyketides from a mangrove-derived fungus Colletotrichum gloeosporioides. J. Antibiot, 2019; 72: 513-517. doi: 10.1038/s41429-019-0178-8
    [9] Yang Z D, Li Z J, Zhao J W, et al. Secondary metabolites and PI3K inhibitory activity of Colletotrichum gloeosporioides, a fungal endophyte of Uncaria rhynchophylla. Curr. Microbiol, 2019; 76: 904-908. doi: 10.1007/s00284-019-01707-7
    [10] Pamela N K, Sergi H A, Armelle T T, et al. Augustin, Colletotrin: a sesquiterpene lactone from the endophytic fungus Colletotrichum gloeosporioides associated with Trichilia monadelpha. J. Chem. Sci, 2017; 72: 697-703. http://www.degruyter.com/view/j/znb.2017.72.issue-10/znb-2017-0058/znb-2017-0058.xml?format=INT
    [11] Vanessa M C, Maria L Z, Ioanis H L, et al. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champac. Molecules, 2014; 19: 19243-19252. doi: 10.3390/molecules191119243
    [12] Inacio M L, Silva G H, Teles H L, et al. Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem. Syst. Ecol, 2006; 34: 822-824. doi: 10.1016/j.bse.2006.06.007
    [13] Liu H X, Tan H B, Chen Y C, et al. Secondary metabolites from the colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat. Prod. Rep, 2018; 32: 2360-2365. doi: 10.1080/14786419.2017.1410810
    [14] Andre A, Wojtowicz N, Toure K, et al. New acorane sesquiterpenes isolated from the endophytic fungus Colletotrichum gloeosporioides SNB-GSS07. Tetrahedron. Lett, 2017; 58: 1269-1272. doi: 10.1016/j.tetlet.2017.02.024
    [15] Chen X W, Yang Z D, Sun J H, et al. Colletotrichine A, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Nat. Prod. Rep, 2018; 32: 880-884. doi: 10.1080/14786419.2017.1365071
    [16] Li Y, Wei W, Wang R L, et al. Colletolides A and B, two new γ-butyrolactone derivatives from the endophytic fungus Colletotrichum gloeosporioide. Phytochem. Lett, 2019; 33: 90-93. doi: 10.1016/j.phytol.2019.08.004
    [17] Zhao J Y, Wang X J, Liu Z, et al. Nonadride and spirocyclic anhydride derivatives from the plant endophytic fungus Talaromyces purpurogenus. J. Nat. Prod, 2019; 82: 2953-2962. doi: 10.1021/acs.jnatprod.9b00210
    [18] Huneck S, Porzel A, Schmidt J, et al. A tridepside from Umbilicaria crustulosa. Phytochemistry, 1993; 32: 475-477. doi: 10.1016/S0031-9422(00)95022-2
    [19] Zou W X, Meng J C, Lu H, et al. Metabolites of colletotrichum gloeosporioides, an endophytic fungus in artemisia mongolica. J. Nat. Prod, 2000; 63: 1529-1530. doi: 10.1021/np000204t
    [20] Gao T, Cao F, Yu H, et al. Secondary metabolites from the marine fungus Aspergillus sydowii. Chem. Nat. Compd, 2017; 53: 1204-1207. doi: 10.1007/s10600-017-2241-7
    [21] Pedras M S, Yu Y, Liu J, et al. Metabolites produced by the phytopathogenic fungus Rhizoctonia solani: isolation, chemical structure determination, syntheses and bioactivity. Ztschrift. für Naturforschung, 2005; 60: 9-10. http://www.degruyter.com/dg/viewarticle.fullcontentlink:pdfeventlink/$002fj$002fznc.2005.60.issue-9-10$002fznc-2005-9-1010$002fznc-2005-9-1010.pdf/znc-2005-9-1010.pdf?t:ac=j$002fznc.2005.60.issue-9-10$002fznc-2005-9-1010$002fznc-2005-9-1010.xml
    [22] Gubiani J R, Teles H L, Silva G H, et al. Cyclo-(TRP-PHE) diketopiperazines from the endophytic fungus Aspergillus versicolor isolated from Piper aduncum. Quim. Nova, 2017; 40: 138-142. http://quimicanova.sbq.org.br/audiencia_pdf.asp?aid2=6521&nomeArquivo=AR20160256.pdf
    [23] Evidente A, Iacobellis N S, Sisto A. Isolation of indole-3-acetic acid methyl ester, a metabolite of indole-3-acetic acid from Pseudomonas amygdali. Experientia, 1993; 49: 182-183. doi: 10.1007/BF01989428
    [24] Zucconi L, Canini F, Temporiti M E, et al. Extracellular Enzymes and Bioactive Compounds from Antarctic Terrestrial Fungi for Bioprospecting. Int. J. Env. Res. Pub. He, 2020; 17: 6459. doi: 10.3390/ijerph17186459
    [25] Eleftheriou P, Geronikaki A, Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type Ⅱ. Curr. Top. Med. Chem, 2019; 19: 246-263. doi: 10.2174/1568026619666190201152153
    [26] Sharma B, Xing L X, Yang F, et al. Recent advance on PTP1B inhibitors and their biomedical applications. Eur. J. Med. Chem, 2020; 199: 112376. doi: 10.1016/j.ejmech.2020.112376
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  163
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-08
  • 录用日期:  2021-04-16
  • 网络出版日期:  2021-12-20

目录

    /

    返回文章
    返回