留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cryopreservation as a versatile strategy for the construction and application of organoids

Xinyue Wang Hengxin Han Yi Xu

Xinyue Wang, Hengxin Han, Yi Xu. Cryopreservation as a versatile strategy for the construction and application of organoids[J]. Frigid Zone Medicine, 2025, 5(2): 119-123. doi: 10.1515/fzm-2025-0013
Citation: Xinyue Wang, Hengxin Han, Yi Xu. Cryopreservation as a versatile strategy for the construction and application of organoids[J]. Frigid Zone Medicine, 2025, 5(2): 119-123. doi: 10.1515/fzm-2025-0013

Cryopreservation as a versatile strategy for the construction and application of organoids

doi: 10.1515/fzm-2025-0013
Funds: 

the National Natural Science Foundation of China 52076140

More Information
  • Figure  1.  Diverse cryopreservation pathways and damage mitigation strategies in organoid cryopreservation

    (A) Schematic representation of diversified cryopreservation pathways, illustrating the stages from tissue acquisition to organoid application. This approach supports the flexible and scalable development of Next-Generation Living Biobanks (NGLB). CPA, cryoprotectant; ESCs, Embryonic stem cells; iPSCs, induced pluripotent stem cells. (B) Overview of the principal types of cryoinjury encountered during cryopreservation, along with corresponding strategies for mitigation, including optimization of cryoprotectants, cooling/warming protocols, and loading techniques[14]. (Copyright 2024, biotechnology journal. Created with BioRender.com).

  • [1] Clevers H. Modeling development and disease with organoids. Cell, 2016; 165(7): 1586-1597. doi: 10.1016/j.cell.2016.05.082
    [2] Hofer M, Lutolf M P. Engineering organoids. Nat Rev Mater, 2021; 6(5): 402-420. doi: 10.1038/s41578-021-00279-y
    [3] Zhao Z, Chen X, Dowbaj A M, et al. Organoids. Nat Rev Methods Primers, 2022; 2(1): 94. doi: 10.1038/s43586-022-00174-y
    [4] Nishinakamura R. Human kidney organoids: progress and remaining challenges. Nat Rev Nephrol, 2019; 15(10): 613-624. doi: 10.1038/s41581-019-0176-x
    [5] Xue W, Li H, Xu J, et al. Effective cryopreservation of human brain tissue and neural organoids. Cell Rep Methods, 2024; 4(5): 100777. doi: 10.1016/j.crmeth.2024.100777
    [6] Murray K A, Gibson M I. Chemical approaches to cryopreservation. Nat Rev Chem, 2022; 6(8): 579-593. doi: 10.1038/s41570-022-00407-4
    [7] Chang T, Zhao G. Ice inhibition for cryopreservation: materials, strategies, and challenges. Adv Sci, 2021; 8(6): 2002425. doi: 10.1002/advs.202002425
    [8] Palechor-Ceron N, Krawczyk E, Dakic A, et al. Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells, 2019; 8 (11): 1327. http://www.xueshufan.com/publication/2981934952
    [9] Mashouf P, Tabibzadeh N, Kuraoka S, et al. Cryopreservation of human kidney organoids. Cell Mol Life Sci, 2024; 81(1): 306. doi: 10.1007/s00018-024-05352-7
    [10] Lee S G, Kim J, Seok J, et al. Development of heart organoid cryopreservation method through Fe3O4 nanoparticles based nanowarming system. Biotechnol J, 2024; 19(1): 2300311. doi: 10.1002/biot.202300311
    [11] Kodali M C, Antone J, Alsop E, et al. Cryopreservation of cerebrospinal fluid cells preserves the transcriptional landscape for single-cell analysis. J Neuroinflammation, 2024; 21(1): 71. doi: 10.1186/s12974-024-03047-1
    [12] Palechor-Ceron N, Krawczyk E, Dakic A, et al. Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells, 2019; 8 (11): 1327. doi: 10.3390/cells8111327
    [13] Tsai Y H, Czerwinski M, Wu A, et al. A method for cryogenic preservation of human biopsy specimens and subsequent organoid culture. Cell Mol Gastroenterol Hepatol, 2018; 6(2): 218-222. doi: 10.1016/j.jcmgh.2018.04.008
    [14] Han H, Zhan T, Guo N, et al. Cryopreservation of organoids: Strategies, innovation, and future prospects. Biotechnol J, 2024; 19(2): 2300543. doi: 10.1002/biot.202300543
    [15] Liu X, Krawczyk E, Suprynowicz F A, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc, 2017; 12(2): 439-445. doi: 10.1038/nprot.2016.174
    [16] Slostad J, Masood A, Swoboda A T, et al. Towards the clinical validity of tumor organoid drug screens: Establishing a framework for organoid disease models. J Clin Oncol, 2021; e15037. doi: 10.1200/JCO.2021.39.15_suppl.e15037
    [17] Cui M, Liu L, Chen L, et al. New cryoprotectant loading method for cell droplet vitrification with continuous evaporation. Langmuir, 2022; 38(46): 14129-14139. doi: 10.1021/acs.langmuir.2c02082
    [18] Zhan T, Niu W, Cui M, et al. Quantitative assessment of intracellular/extracellular dimethyl sulfoxide concentrations during freezing with low-temperature confocal Raman micro-spectroscopy. Analyst, 2023; 148(1): 47-60. doi: 10.1039/D2AN01288J
    [19] Cui M, Zhan T, Yang J, et al. Droplet generation, vitrification, and warming for cell cryopreservation: a review. ACS Biomaterials Science & Engineering, 2023; 9(3): 1151-1163. doi: 10.1021/acsbiomaterials.2c01087
    [20] He W, Zhan T, Han H, et al. Optimization of deep eutectic solvents enables green and efficient cryopreservation. Langmuir, 2023; 40(1): 624-637. doi: 10.1021/acs.langmuir.3c02808
    [21] Massie I, Selden C, Hodgson H, et al. GMP cryopreservation of large volumes of cells for regenerative medicine: active control of the freezing process. Tissue Eng Part C Methods, 2014; 20(9): 693-702. doi: 10.1089/ten.tec.2013.0571
    [22] Dou M, Lu C, Rao W. Bioinspired materials and technology for advanced cryopreservation. Trends Biotechnol, 2022; 40(1): 93-106. doi: 10.1016/j.tibtech.2021.06.004
    [23] Huang H, He X, Yarmush M L. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng, 2021; 5(8): 793-804. doi: 10.1038/s41551-021-00784-z
    [24] Han H, Zhan T, Cui M, et al. Investigation of rapid rewarming chips for cryopreservation by joule heating. Langmuir, 2023; 39(31): 1104811062. doi: 10.1021/acs.langmuir.3c01364
    [25] Zuo J, Cao M, Han H, et al. Optimization of annealing and metal films radiofrequency heating procedures for vitrified umbilical arteries. Langmuir, 2024; 40(2): 1164-1176. doi: 10.1021/acs.langmuir.3c02125
  • 加载中
图(1)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  6
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-08
  • 录用日期:  2025-01-23
  • 网络出版日期:  2025-08-27

目录

    /

    返回文章
    返回