留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Circulating CCRR serves as potential novel biomarker for predicting acute myocardial infarction

Lina Xuan Huishan Luo Shu Wang Guangze Wang Xingmei Yang Jun Chen Jianjun Guo Xiaomeng Duan Xiufang Li Hua Yang Shengjie Wang Hailong Zhang Qingqing Zhang Shulei Liu Yongtao She Kai Kang Lihua Sun

Lina Xuan, Huishan Luo, Shu Wang, Guangze Wang, Xingmei Yang, Jun Chen, Jianjun Guo, Xiaomeng Duan, Xiufang Li, Hua Yang, Shengjie Wang, Hailong Zhang, Qingqing Zhang, Shulei Liu, Yongtao She, Kai Kang, Lihua Sun. Circulating CCRR serves as potential novel biomarker for predicting acute myocardial infarction[J]. Frigid Zone Medicine, 2024, 4(3): 137-151. doi: 10.1515/fzm-2024-0015
Citation: Lina Xuan, Huishan Luo, Shu Wang, Guangze Wang, Xingmei Yang, Jun Chen, Jianjun Guo, Xiaomeng Duan, Xiufang Li, Hua Yang, Shengjie Wang, Hailong Zhang, Qingqing Zhang, Shulei Liu, Yongtao She, Kai Kang, Lihua Sun. Circulating CCRR serves as potential novel biomarker for predicting acute myocardial infarction[J]. Frigid Zone Medicine, 2024, 4(3): 137-151. doi: 10.1515/fzm-2024-0015

Circulating CCRR serves as potential novel biomarker for predicting acute myocardial infarction

doi: 10.1515/fzm-2024-0015
Funds: 

the Natural Science Foundation of China 81970202

the Natural Science Foundation of China 81903609

Natural Science Foundation of Heilongjiang Province, China LH2022H002

the Outstanding Young Talent Research Fund of College of Pharmacy, Harbin Medical University 2019-JQ-02

2021 (the second batch) Research Funds for affiliated research institutes in Heilongjiang Province CZKYF2021-2-C013

More Information
  • Figure  1.  Analyses of CCRR levels in whole blood of acute myocardial infarction (AMI) patients

    (A) The expression levels of lncRNA CCRR in whole blood samples from AMI patients and non-AMI subjects were comparatively analyzed using qRT-PCR. N = 68 for AMI and N = 69 for non-AMI subjects. (B and C) Circulating levels of lncRNA ZFAS1 (B) and CDR1AS (C). The expression levels of lncRNA ZFAS1 in whole blood samples; N = 21 for AMI and N = 23 for non-AMI subjects. The expression levels of lncRNA CDR1AS in whole blood samples; N = 25 for AMI and N = 30 for non-AMI subjects. Data are represented as means ± SEM; **P < 0.01 vs. Non-AMI. (D) The area under the ROC curve (AUC) was analyzed to determine the predictive power of circulating lncRNA levels for AMI using non-AMI subjects as control.

    Figure  2.  The expression of lncRNA CCRR in ischemic border zone of the heart and whole blood after acute myocardial infarction (AMI) surgery at different time points

    (A, B) Changes of CCRR in cardiac tissues (A) and blood (B) CCRR levels in a mouse model of AMI at various time points (2 h, 6 h, 12 h and 24 h). The number of cardiac tissue sample was: N = 20 for sham, N = 12 for AMI 2 h, N = 14 for AMI 6 h, N = 14 for AMI 12 h, N = 8 for AMI 24 h. The number of blood sample was: N = 27 for sham, N = 11 for AMI 2h, N = 11 for AMI 6 h, N = 15 for AMI 12 h, N = 15 for AMI 24 h. AMI represent acute myocardial infarction with LAD. Data are represented as means ± SEM; *P < 0.05 vs. Sham, **P < 0.01 vs. Sham.

    Figure  3.  Exosomes as new vesicular lipid transporters involved in changes of CCRR in whole blood after acute myocardial infarction (AMI)

    (A) GW4869 inhibited CD63 expression in the heart of AMI mice. N = 6 per group. (B) GW4869 inhibits CD63 expression in the cytoplasm of cardiomyocytes in GWAMI mice. CD63 was marked by red colour, α-actinin by green colour and DAPI by blue colour. Scale bar: 20 μm. N = 3 per group. (C) Confocal colocalization analysis of CCRR (red) and CD63 (green) in primary cultured neonatal mouse cardiomyocytes. CCRR was marked by red colour, CD63 by green colour and DAPI by blue colour. Scale bar: 5 μm. (D) Confocal co-localization analysis of CCRR and CD63 in mouse myocardium. CCRR was marked by red colour, CD63 by green colour and DAPI by blue colour. Scale bar: 20 μm. (E, F) CCRR levels in myocardial tissue (E) of mice and whole blood (F) after AMI mice were treated by GW4869. N = 16 per group. Data are represented as means ± SEM; *P < 0.05 vs. Sham, **P < 0.01 vs. Sham, #P < 0.05 vs. AMI, ##P < 0.01 vs. AMI.

    Figure  4.  Characterization of cardiomyocytes-derived exosomes

    (A) Exosomes were extracted from cardiomyocyte supernatants under normoxic or hypoxic conditions. (B) Electron micrograph-analyzed cardiomyocyte exosomes. Scale bar: 200 nmol/L. (C) The size distribution of nor-Exo and hypo-Exo determined by nanoparticle tracking analysis (NTA). (D) Western blot of exosomal marker expression in cardiomyocyte exosomes. (E) Primary neonatal mouse cardiomyocytes were cultured with PKH26-labeled exosomes or without PKH26-labeled exosomes at 37℃, 5% CO2 for 24 h. PKH26 was marked by red colour, α-actinin by green colour and DAPI by blue colour. Scale bar: 10 μm.

    Figure  5.  GW4869 treatment mitigates myocardial infarction-induced cardiac dysfunction

    (A) Flowchart of in vivo experimental design. (B) Western blot showing the protein level of CD63 and CD81 in Sham control mice cardiac exosomes (ShamExo), AMI mice cardiac exosomes (AMI-Exo) and GW4869-AMI mice cardiac exosomes N = 3. (C) lncRNA CCRR levels in the cardiac exosomes. N = 7 per group. (D) Representative echocardiographic images showing heart function among the different groups in the 12 h following AMI. (E-H) Quantitative analysis of left ventricular ejection fraction (E) left ventricular fraction shortening (F) left ventricular end-diastolic diameter (G) and left ventricular systolic diameter (H) among the different groups. N = 4 mice per group. Data are represented as means ± SEM; *P < 0.05 vs. Sham, **P < 0.01 vs. Sham, ***P < 0.001 vs. Sham, #P < 0.05 vs. AMI, ##P < 0.01 vs. AMI, ###P < 0.001 vs. AMI.

    Figure  6.  Administration of CCRR overexpressed exosomes improves cardiac 3 function in acute myocardial infarction mice

    (A) Flowchart of in vivo experimental design. (B) Immunofluorescence images of cardiac tissue after intravenous injection of PKH26-labeled exosomes or PBS in mice. Scale bar: 20 μm. (C) Expression level of lncRNA CCRR in exosomes. N = 6 per group. (D) lncRNA CCRR levels in myocardial tissue. N = 7-8 per group. (E) Representative echocardiographic images showing cardiac function among the different groups on the 12 h following AMI. (F-I) Quantitative analysis of left ventricular ejection fraction (F) left ventricular fraction shortening (G) left ventricular end-diastolic diameter (H) and left ventricular systolic diameter (I) among the different groups. N = 6-8 mice per group. Data are represented as means ± SEM; *P < 0.05 vs. Sham, **P < 0.01 vs. Sham, #P < 0.05 vs. NC-Exos-AMI; ##P < 0.01 vs. NC-Exos-AMI.

    Figure  7.  Schematic illustration of delivery of the exosomal lncRNA CCRR into circulation in acute myocardial infarction injury. Exosomal lncRNA CCRR derived from hypoxic cardiomyocytes is released into circulation. Circulating exosomal lncRNA CCRR may serves as a promising novel biomarker for AMI risk prediction.

    Table  1.   Basic characteristic indicators and diagnostic indicators of non-AMI control subjects and myocardial infarction patients

    Characteristics Statistical items Non-AMI control AMI P value
    Age N (Missing) 68 (1) 68 0.5671
    Mean (SEM) 61.57 (1.08) 60.60 (1.30)
    Min, Max 40.00, 80.00 42.00, 82.00
    Median 61.50 60.50
    Range 56.00-68.00 52.00-69.00
    Gender Male 33 (47.83%) 43 (63.24%) 0.0705
    Female 36 (52.17%) 25 (36.76%)
    Total (Missing) 69 68
    Hypertension Yes 35 (55.56%) 30 (44.12%) 0.1936
    No 28 (44.44%) 38 (55.88%)
    Total (Missing) 63 (6) 68
    Smoking Yes 20 (31.75%) 30 (44.12%) 0.1475
    No 43 (68.25%) 38 (55.88%)
    Total (Missing) 63 (6) 68
    Diabetes Yes 17 (26.98%) 19 (27.94%) 0.9034
    No 46 (73.02%) 49 (72.06%)
    Total (Missing) 63 (6) 68
    HDL N (Missing) 62 (7) 67 (1) 0.3831
    Mean (SEM) 1.1050 (0.0336) 1.7870 (0.7482)
    Min, Max 0.530, 1.820 0.540, 51.120
    Median 1.095 1.040
    Range 0.9075-1.2550 0.860-1.230
    LDL N (Missing) 62 (7) 67 (1) 0.0252
    Mean (SEM) 2.700 (0.1125) 3.059 (0.1115)
    Min, Max 1.160, 4.870 1.520, 6.420
    Median 2.580 2.860
    Range 2.155-3.225 2.390-3.570
    CHOL N (Missing) 62 (7) 67 (1) 0.0158
    Mean (SEM) 4.368 (0.1483) 4.900 (0.1577)
    Min, Max 2.340, 8.720 2.760, 10.310
    Median 4.245 4.740
    Range 3.540-5.135 4.030-5.620
    TG N (Missing) 62 (7) 67 (1) 0.4304
    Mean (SEM) 1.932 (0.1736) 2.123 (0.1681)
    Min, Max 0.490, 7.560 0.540, 6.090
    Median 1.620 1.670
    Range 1.058-2.205 1.030-3.000
    AST N (Missing) 15 (54) 49 (19) 0.0011
    Mean (SEM) 26.43 (2.668) 181.7 (24.90)
    Min, Max 17.00, 53.00 20.00, 769.00
    Median 23.50 85.00
    Range 19.00-28.00 41.00-287.30
    LDH N (Missing) 6 (63) 59 (9) 0.0514
    Mean (SEM) 226.9 (52.04) 918.5 (110.1)
    Min, Max 136.50, 484.00 148.00, 5437.0
    Median 184.70 674.00
    Range 170.60-263.20 391.00-1094.0
    CK-MB N (Missing) 30 (39) 39 (29) 0.0011
    Mean (SEM) 1.042 (0.1597) 71.63 (18.15)
    Min, Max 0.200, 4.500 0.300, 576.20
    Median 0.720 27.60
    Range 0.630-1.300 1.900-106.30
    CK N (Missing) 6 (63) 59 (9) 0.0436
    Mean (SEM) 86.30 (13.90) 1522 (220.7)
    Min, Max 45.10, 136.90 33.00, 6779
    Median 77.05 844.0
    Range 60.18-121.6 178.0-2415
    HBDH N (Missing) 5 (64) 35 (33) 0.0425
    Mean (SEM) 118.7 (7.825) 638.5 (92.56)
    Min, Max 101.0, 139.5 134.8, 2367
    Median 111.8 438.6
    Range 103.6-137.4 265.4-724.4
    cTn N (Missing) 31 (38) 48 (20) 0.0218
    Mean (SEM) 6.682 (2.566) 21341 (7306)
    Min, Max 0.000, 70.70 2.900, 289880
    Median 2.210 3727
    Range 1.400, 5.100 178.2, 14289
    AST: aspartate transaminase; CHOL: total cholesterol; CK: creatine kinase; CK-MB: creatine kinase MB; HBDH: hydroxybutyrate dehydrogenase; HDL: high density cholesterol; LDH: lactic dehydrogenase; LDL: low density cholesterol; TG: triglyceride.
    下载: 导出CSV

    Table  2.   The Statistical Analysis of Circulating lncRNA CCRR

    lncRNA Statistical items Non-AMI control AMI P value
    CCRR N (Missing) 69 68 < 0.001
    Mean (SEM) 1.0000 (0.0544) 1.9290 (0.1323)
    Min, Max 0.257, 2.214 0.768, 6.033
    Range 0.649, 1.247 1.146, 2.292
    下载: 导出CSV

    Table  3.   Univariate regression analysis for the association of CCRR with basic characteristic indicators between AMI patients and non-AMI control subject

    Parameter Estimate SE Wald P value OR 95%CI
    lower upper
    CCRR 2.333 0.4527 26.543 < 0.0001 10.31 4.573 27.23
    Age -0.0101 0.0176 0.3327 0.5635 0.9899 0.9561 1.025
    Gender 0.6293 0.3483 3.265 0.0705 1.876 0.9524 3.744
    Diabetes 0.0481 0.3919 0.0150 0.9024 1.049 0.4861 2.277
    HDL 0.0599 0.0957 0.3916 0.3258 1.062 0.9581 2.055
    LDL 0.4579 0.2093 4.787 0.0232 1.581 1.063 2.428
    TG 0.1041 0.1316 0.6266 0.4247 1.110 0.8603 1.451
    CHOL 0.3719 0.1594 5.448 0.0136 1.450 1.077 2.016
    HDL: high density cholesterol; LDL: low density cholesterol; TG: triglyceride; CHOL: total cholesterol.
    下载: 导出CSV

    Table  4.   Multivariate regression analysis for the association of CCRR with basic characteristic indicators between AMI patients and non-AMI control subjects

    Parameter Estimate SE Wald P value OR 95%CI
    lower upper
    CCRR 2.516 0.5112 24.22 < 0.0001 12.38 4.982 37.41
    Age -0.0099 0.0244 0.1640 0.6855 0.9902 0.9433 1.039
    Gender 0.7746 0.5167 2.247 0.1338 2.170 0.8018 6.183
    Diabetes 0.4361 0.5437 0.6434 0.4225 1.547 0.5370 4.609
    HDL 0.01978 0.0911 0.0471 0.8281 1.020 0.9174 2.026
    LDL 0.2817 0.5466 0.2656 0.6063 1.325 0.3725 3.538
    TG -0.0263 0.1997 0.0174 0.8951 0.974 0.6485 1.438
    CHOL 0.4090 0.4215 0.9413 0.3319 1.505 0.7449 4.332
    HDL: high density cholesterol; LDL: low density cholesterol; TG: triglyceride; CHOL: total cholesterol.
    下载: 导出CSV
  • [1] Roth G A, Mensah G A, Johnson C O, et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J. Am. Coll. Cardiol, 2020; 76: 2982-3021.
    [2] Liu S, Li Y, Zeng X, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 global burden of disease study. JAMA Cardiology, 2019; 4 (4): 342-352. doi: 10.1001/jamacardio.2019.0295
    [3] Zhao D. Epidemiological features of cardiovascular disease in Asia. JACC: Asia, 2021; 1 (1): 1-13. doi: 10.1016/j.jacasi.2021.04.007
    [4] Li X, Wu C, Lu J, et al. Cardiovascular risk factors in China: a nationwide population-based cohort study. The Lancet Public Health, 2020; 5 (12): e672-e681. doi: 10.1016/S2468-2667(20)30191-2
    [5] Lei J, Chen R, Yin P, et al. Association between cold spells and mortality risk and burden: a nationwide study in China. Environmental Health Perspectives, 2022; 130 (2): 027006. doi: 10.1289/EHP9284
    [6] Schulte C, Barwari T, Joshi A, et al. Noncoding RNAs versus protein biomarkers in cardiovascular disease. Trends Mol Med, 2020; 26: 583-596. doi: 10.1016/j.molmed.2020.02.001
    [7] Emdin M, Aimo A, Vergaro G, et al. sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J Am Coll Cardiol, 2018; 72: 2309-2320. doi: 10.1016/j.jacc.2018.08.2165
    [8] Wang Y, Sun X. The functions of LncRNA in the heart. Diabetes Res Clin Pract, 2020; 168: 108249. doi: 10.1016/j.diabres.2020.108249
    [9] Mozaffarian D, Benjamin E J, Go A S, et al. Heart disease and stroke statistics-2015 update: a report from the American Heart Association. Circulation, 2015; 131: e29-322. doi: 10.1161/circ.131.suppl_2.o29
    [10] Kopp F, Mendell J T. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018; 172: 393-407. doi: 10.1016/j.cell.2018.01.011
    [11] Chang G, Zhang W, Zhang M, et al. Clinical value of circulating ZFAS1 and miR-590-3p in the diagnosis and prognosis of chronic heart failure. Cardiovasc. Toxicol, 2021; 21: 880-888. doi: 10.1007/s12012-021-09678-7
    [12] Sharma S, Findlay G M, Bandukwala H S, et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA protein scaffold complex. Proc Natl Acad Sc, 2011; 108: 11381-11386. doi: 10.1073/pnas.1019711108
    [13] Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res, 2017; 120: 381-399. doi: 10.1161/CIRCRESAHA.116.308434
    [14] Cao M, Luo H, Li D, et al. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int J Cardiol, 2022; 353: 109-117. doi: 10.1016/j.ijcard.2022.01.070
    [15] Zhang Y, Sun L, Xuan L, et al. Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Sci Rep, 2016; 6: 2384.
    [16] Wang X, Wang L, Ma Z, et al. Early expressed circulating long noncoding RNA CHAST is associated with cardiac contractile function in patients with acute myocardial infarction. Int J Cardiol, 2020; 302: 15-20. doi: 10.1016/j.ijcard.2019.12.058
    [17] Tang Y, Zheng J, Sun Y, et al. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int Heart J, 2009; 50: 377-387. doi: 10.1536/ihj.50.377
    [18] Gao L, Liu Y, Guo S, et al. Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cell. Physiol. Biochem, 2017; 44: 1497-1508. doi: 10.1159/000485588
    [19] Azat M, Huojiahemaiti X, Gao R, et al. Long noncoding RNA MIAT: a potential role in the diagnosis and mediation of acute myocardial infarction. Mol Med Rep, 2019; 20: 5216-5222.
    [20] Wang L, Wang L, Wang Q. Constitutive activation of the NEAT1/miR-22-3p/Ltb4r1 signaling pathway in mice with myocardial injury following acute myocardial infarction. Aging (Albany NY), 2021; 13: 15307-15319.
    [21] Li M, Wang Y F, Yang X C, et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction. Med Sci Monit, 2018; 24: 5064-5070. doi: 10.12659/MSM.909348
    [22] Yan L, Zhang Y, Zhang W, et al. lncRNA-NRF is a potential biomarker of heart failure after acute myocardial infarction. J Cardiovasc Transl Res, 2020; 13: 1008-1015. doi: 10.1007/s12265-020-10029-0
    [23] Zhang Y, Sun L, Xuan L, et al. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat Commun, 2018; 9: 4176. doi: 10.1038/s41467-018-06637-9
    [24] Khodayi M, Khalaj-Kondori M, Hoseinpour F M A, et al. Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer's disease. EXCLI J, 2022; 21: 772-785.
    [25] Isaac R, Reis F C G, Ying W, et al. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab, 2021; 33: 1744-1762. doi: 10.1016/j.cmet.2021.08.006
    [26] Zheng M L, Liu X Y, Han R J, et al. Circulating exosomal long noncoding RNAs in patients with acute myocardial infarction. J Cell Mol Med, 2020; 24: 9388-9396. doi: 10.1111/jcmm.15589
    [27] Catalano M, O'Driscoll L. Inhibiting extracellular vesicles formation and release: a review of EV inhibitors. J Extracell Vesicles, 2020; 9, 1703244. doi: 10.1080/20013078.2019.1703244
    [28] Crea F. How epidemiology can improve the understanding of cardiovascular disease: from mechanisms to treatment. Eur Heart J, 2021; 42: 4503-4507. doi: 10.1093/eurheartj/ehab797
    [29] Lerman B, Lerman L O. "Nothing burns like the cold": Cardiovascular disease in frigid zones. Frigid Zone Medicine, 2022; 2 (3): 129-131. doi: 10.2478/fzm-2022-0017
    [30] Jin H. Increased risk of cardiovascular disease in cold temperatures. Frigid Zone Medicine, 2022; 2 (3): 138-139. doi: 10.2478/fzm-2022-0020
    [31] Oitabén A, Fonseca P, Villanueva M J, et al. Emerging blood-based biomarkers for predicting immunotherapy response in NSCLC. Cancers (Basel), 2022; 14 (11), 2626. doi: 10.3390/cancers14112626
    [32] Chaitman B R, Cyr D D, Alexander K P, et al. Cardiovascular and renal implications of myocardial infarction in the ISCHEMIA-CKD trial. Circ Cardiovasc Interv, 2022; 15: e012103.
    [33] Wang F, Li X, Xie X, et al. UCA1, a non-protein-coding RNA upregulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett, 2008; 582: 1919-1927. doi: 10.1016/j.febslet.2008.05.012
    [34] Yan Y, Zhang B, Liu N, et al. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. Biomed Res Int, 2016; 2016: 8079372.
    [35] Zheng P F, Chen L Z, Liu P, et al. A novel lncRNA-miRNA-mRNA triple network identifies lncRNA XIST as a biomarker for acute myocardial infarction. Aging (Albany NY), 2022; 14: 4085-4106.
    [36] Wang Y, Zhao R, Liu W, et al. Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev, 2019; 2019: 7954657.
    [37] Gupta S, Knowlton A A. HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol, 2007; 292: H3052-3056.
    [38] King H W, Michael M Z, Gleadle J M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer, 2021; 12: 421.
    [39] Vicencio J M, Yellon D M, Sivaraman V, et al. Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol, 2015; 65 (15): 1525-1536.
    [40] Tomasoni S, Longaretti L, Rota C, et al. Transfer of growth factor receptor mRNA via exosomes unravels the regenerative effect of mesenchymal stem cells. Stem Cells Dev, 2013; 22 (5): 772-778.
    [41] Jiao L, Li M, Shao Y, et al. lncRNA-ZFAS1 induces mitochondriamediated apoptosis by causing cytosolic Ca2+ overload in myocardial infarction mice model. Cell Death Dis, 2019; 10: 942.
    [42] Shao Y, Li M, Yu Q, et al. CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol, 2022; 922: 174915.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  65
  • HTML全文浏览量:  36
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-01
  • 录用日期:  2024-06-07

目录

    /

    返回文章
    返回