留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Seasonal variation in dietary intake and its association with obesity-related chronic diseases in northeast China

Cheng Wang Zican Li Dongwei Guan Hongxin Fu Rennan Feng

Cheng Wang, Zican Li, Dongwei Guan, Hongxin Fu, Rennan Feng. Seasonal variation in dietary intake and its association with obesity-related chronic diseases in northeast China[J]. Frigid Zone Medicine, 2024, 4(3): 129-136. doi: 10.1515/fzm-2024-0014
Citation: Cheng Wang, Zican Li, Dongwei Guan, Hongxin Fu, Rennan Feng. Seasonal variation in dietary intake and its association with obesity-related chronic diseases in northeast China[J]. Frigid Zone Medicine, 2024, 4(3): 129-136. doi: 10.1515/fzm-2024-0014

Seasonal variation in dietary intake and its association with obesity-related chronic diseases in northeast China

doi: 10.1515/fzm-2024-0014
Funds: 

the National Natural Science Foundation of China 82273612

the National Natural Science Foundation of China 81573133

More Information
  • Table  1.   General characteristics of the participants

    Summer (N = 2718) Winter (N = 2055) P Value
    Age 40.23 ± 16.29 38.68 ± 14.87 < 0.01
    Gender 0.854
      Male 1215 (44.70) 925(45.01)
      Female 1503 (55.30) 1130 (54.99)
    Body mass index, kg/m2 23.37 ± 3.47 23.090 ± 3.18 < 0.01
    Systolic blood pressure, mmHg 121.43 ± 14.71 120.143 ± 12.21 < 0.01
    Diastolic blood pressure, mmHg 79.58 ± 9.93 78.665 ± 8.30 < 0.01
    Drinking, N (% current) 425(15.64) 219(10.66) < 0.01
    Smoking, N (% current) 364(13.39) 269(13.09) 0.729
    Educational status < 0.01
      Junior school and below 639(23.51) 543(26.42)
      Senior high school or equivalent 579(21.30) 395(19.22)
      College or equivalent 1448 (53.27) 964(46.91)
      Postgraduate or above 52 (1.91) 153(7.45)
    Work intensity, N (%) < 0.01
      Light 1762 (64.83) 1137 (55.33)
      Moderate 765(28.15) 685(33.33)
      Heavy 191(7.03) 233(11.34)
    Income per month, yuan < 0.01
       < 1000 584(21.49) 540(26.28)
      1000-2000 555(20.42) 302(14.70)
      2000-3000 753(27.70) 565(27.49)
      3000-4000 418(15.38) 315(15.33)
      > 4000 408(15.01) 333(16.20)
    P Values were determined using Chi-squared test for categorical variables, analysis of Student's t test for continuous variables and Mann-Whitney U test for non-normal continuous variables. Data are expressed as mean ± SD, frequencies and percentages as appropriate.
    下载: 导出CSV

    Table  2.   Dietary and nutrients intake of the participants in summer and winter

    Groups Summer (N = 2718) Winter (N = 2055) % difference P Value
    Refined grains, g/d 287.67 ± 167.89 296.03 ± 165.91 1.43% 0.087
    Potatoes, g/d 55.68 ± 57.91 53.73 ± 52.64 -1.78% 0.232
    Legumes, g/d 98.11 ± 100.67 87.18 ± 82.60 -5.89% < 0.001
    Vegetables, g/d 386.81 ± 282.88 333.23 ± 236.60 -7.44% < 0.001
    Fungi, g/d 44.00 ± 49.54 45.87 ± 55.96 2.07% 0.224
    Fruits, g/d 281.04 ± 249.78 215.36 ± 182.38 -13.23% < 0.001
    Seed and nuts, g/d 41.83 ± 47.75 29.97 ± 33.27 -16.51% < 0.001
    Livestock, g/d 75.79 ± 61.16 72.44 ± 54.22 -2.26% 0.050
    Poultry, g/d 26.37 ± 32.94 27.81 ± 33.15 2.67% 0.135
    Dairy products, g/d 96.92 ± 110.78 107.48 ± 112.91 5.16% 0.001
    Egg, g/d 27.56 ± 28.85 28.11 ± 26.41 0.98% 0.501
    Fish, g/d 66.59 ± 70.85 37.69 ± 37.78 -27.72% < 0.001
    Fast food, g/d 52.36 ± 57.61 50.53 ± 55.29 -1.78% 0.270
    Sweets, g/d 3.01 ± 6.80 3.27 ± 5.26 4.25% 0.140
    Beverages, mL/d 38.48 ± 96.73 41.27 ± 95.70 3.49% 0.322
    Condiments, g/d 10.25 ± 17.67 8.40 ± 19.67 -9.93% < 0.001
    Total energy, kcal/d 2362.22 ± 819.53 2094.75 ± 789.09 -6.00% < 0.001
    Protein, g/d 89.99 ± 36.51 84.34 ± 34.56 -3.24% < 0.001
    Total fat, g/d 76.13 ± 36.10 62.30 ± 30.62 -9.99% < 0.001
    Carbohydrate, g/d 345.62 ± 133.51 310.04 ± 128.95 -5.43% < 0.001
    Fiber, g/d 20.07 ± 10.81 15.51 ± 9.43 -12.83% < 0.001
    Cholesterol, g/d 501.51 ± 322.20 371.76 ± 232.62 -14.86% < 0.001
    Fatty acids, g/d 42.84 ± 24.03 44.20 ± 23.63 1.56% 0.052
    Saturated fatty acids, g/d 10.09 ± 5.21 11.62 ± 5.70 7.03% < 0.001
    Monounsaturated fatty acids, g/d 13.93 ± 7.69 16.50 ± 9.50 8.44% < 0.001
    Polyunsaturated fatty acid, g/d 18.39 ± 12.34 15.51 ± 10.02 -8.48% < 0.001
    Phytosterols, mg/d 1326.10 ± 1000.12 503.32 ± 762.50 -44.97% < 0.001
    P Values were determined using Student's t test for continuous variables and Mann-Whitney U-test for non-normal continuous variables. Difference in percentage of average summer consumption as it relates to average winter consumption. Data are expressed as mean ± SD.
    下载: 导出CSV

    Table  3.   Association of different types of fatty acids and phytosterols with prevalence of obesity in participants during summer and winter

    Quartiles Summer (N = 2718) Winter (N = 2055)
    Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
    Fatty acids
      Crude 1 1.421 (0.991-2.048) 1.402 (0.977-2.023) 1.077 (0.736-1.578) 1 1.384 (0.858-2.254) 1.241 (0.761-2.040) 0.728 (0.414-1.262)
      Model1 1 1.441 (1.001-2.088) 1.423 (0.987-2.063) 1.047 (0.711-1.543) 1 1.254 (0.767-2.068) 1.041 (0.624-1.747) 0.605 (0.336-1.072)
      Model2 1 1.451 (1.006-2.103)* 1.432 (0.992-2.078) 1.056 (0.716-1.560) 1 1.272 (0.776-2.104) 1.081 (0.646-1.819) 0.636 (0.353-1.131)
      Model3 1 1.441 (0.996-2.097) 1.371 (0.945-2.000) 1.031 (0.695-1.530) 1 1.239 (0.747-2.069) 1.083 (0.639-1.843) 0.607 (0.333-1.092)
    Saturated fatty acids
      Crude 1 1.092 (0.753-1.585) 1.266 (0.883-1.821) 1.264 (0.882-1.818) 1 0.842 (0.502-1.404) 1.286 (0.808-2.064) 0.812 (0.482-1.358)
      Model1 1 1.100 (0.756-1.602) 1.335 (0.928-1.928) 1.264 (0.878-1.827) 1 0.753 (0.441-1.275) 1.091 (0.666-1.795) 0.662 (0.382-1.139)
      Model2 1 1.107 (0.760-1.614) 1.346 (0.935-1.947) 1.292 (0.896-1.870) 1 0.733 (0.428-1.246) 1.102 (0.670-1.822) 0.675 (0.388-1.164)
      Model3 1 1.079 (0.737-1.582) 1.326 (0.915-1.930) 1.234 (0.848-1.802) 1 0.703 (0.405-1.210) 1.062 (0.635-1.782) 0.623 (0.353-1.089)
    Monounsaturated fatty acids
      Crude 1 1.229 (0.853-1.775) 1.192 (0.826-1.725) 1.288 (0.897-1.855) 1 1.703 (1.053-2.799)* 1.112 (0.656-1.891) 1.036 (0.606-1.773)
      Model1 1 1.332 (0.921-1.935) 1.269 (0.875-1.845) 1.331 (0.923-1.927) 1 1.566 (0.956-2.605) 0.950 (0.548-1.649) 0.862 (0.492-1.511)
      Model2 1 1.326 (0.916-1.927) 1.271 (0.875-1.851) 1.333 (0.923-1.932) 1 1.563 (0.950-2.611) 0.968 (0.557-1.686) 0.891 (0.507-1.568)
      Model3 1 1.335 (0.919-1.948) 1.236 (0.847-1.810) 1.302 (0.896-1.901) 1 1.557 (0.938-2.619) 0.946 (0.537-1.670) 0.859 (0.483-1.528)
    Polyunsaturated fatty acid
      Crude 1 1.209 (0.852-1.721) 1.158 (0.813-1.652) 0.862 (0.591-1.255) 1 1.247 (0.785-1.993) 0.787 (0.468-1.311) 0.787 (0.468-1.311)
      Model1 1 1.164 (0.814-1.669) 1.081 (0.754-1.553) 0.796 (0.541-1.168) 1 1.085 (0.676-1.749) 0.650 (0.380-1.100) 0.661 (0.386-1.119)
      Model2 1 1.161 (0.811-1.666) 1.088 (0.758-1.565) 0.795 (0.540-1.169) 1 1.116 (0.694-1.803) 0.680 (0.398-1.154) 0.693 (0.404-1.177)
      Model3 1 1.163 (0.809-1.675) 1.067 (0.741-1.540) 0.790 (0.533-1.167) 1 1.155 (0.711-1.886) 0.693 (0.399-1.193) 0.688 (0.395-1.186)
    Phytosterols
      Crude 1 0.573 (0.404-0.807)* 0.618 (0.438-0.865)* 0.530 (0.371-0.751)** 1 0.841 (0.524-1.343) 0.790 (0.488-1.269) 0.589 (0.348-0.976)*
      Model1 1 0.619 (0.434-0.876)* 0.707 (0.498-0.998) 0.609 (0.423-0.871)* 1 0.806 (0.501-1.289) 0.790 (0.487-1.270) 0.738 (0.421-1.274)
      Model2 1 0.605 (0.424-0.857)* 0.687 (0.483-0.972)* 0.598 (0.414-0.858)* 1 0.824 (0.511-1.322) 0.811 (0.499-1.308) 0.738 (0.420-1.279)
      Model3 1 0.616 (0.429-0.878)* 0.675 (0.471-0.963)* 0.603 (0.414-0.873)* 1 0.815 (0.503-1.315) 0.803 (0.489-1.307) 0.729 (0.408-1.286)
    Crude not adjusted for any potential covariates; Model 1adjusted for age, gender; Model 2 adjusted for age, gender, drinking status, smoking status; Model 3 adjusted for age, gender, drinking status, smoking status, educational status, income, work intensity. **P < 0.001; *P < 0.05; non letter or symbol, P > 0.05.
    下载: 导出CSV

    Table  4.   Association of different types of fatty acids and phytosterols with prevalence of hyperlipidemia in participants during summer and winter

    Quartiles Summer (N = 2623) Winter (N = 1948)
    Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
    Fatty acids
      Crude 1 1.412 (0.881-2.288) 1.342 (0.833-2.183) 1.100 (0.668-1.820) 1 0.927 (0.426-2.003) 1.222 (0.596-2.546) 0.927 (0.426-2.003)
      Model1 1 1.381 (0.851-2.266) 1.310 (0.804-2.156) 0.966 (0.579-1.618) 1 0.735 (0.330-1.624) 0.830 (0.390-1.787) 0.619 (0.274-1.387)
      Model2 1 1.490 (0.911-2.464) 1.474 (0.897-2.447) 1.124 (0.667-1.902) 1 0.725 (0.319-1.630) 0.894 (0.415-1.953) 0.712 (0.310-1.626)
      Model3 1 1.421 (0.862-2.368) 1.336 (0.804-2.243) 0.996 (0.584-1.704) 1 0.924 (0.397-2.138) 1.174 (0.524-2.678) 0.901 (0.380-2.131)
    Saturated fatty acids
      Crude 1 0.885 (0.544-1.433) 0.885 (0.544-1.433) 1.260 (0.807-1.979) 1 1.375 (0.629-3.102) 1.187 (0.526-2.728) 1.661 (0.787-3.666)
      Model1 1 0.846 (0.514-1.385) 0.942 (0.574-1.542) 1.180 (0.747-1.874) 1 1.079 (0.479-2.497) 0.812 (0.345-1.935) 1.118 (0.509-2.556)
      Model2 1 0.870 (0.527-1.432) 1.025 (0.620-1.689) 1.340 (0.841-2.149) 1 0.942 (0.409-2.222) 0.810 (0.339-1.964) 1.154 (0.515-2.682)
      Model3 1 0.814 (0.487-1.355) 0.911 (0.545-1.519) 1.138 (0.704-1.852) 1 1.241 (0.520-3.035) 0.878 (0.354-2.213) 1.232 (0.530-2.974)
    Monounsaturated fatty acids
      Crude 1 1.030 (0.629-1.689) 1.289 (0.808-2.074) 1.224 (0.763-1.977) 1 1.519 (0.731-3.271) 1.519 (0.731-3.271) 0.745 (0.302-1.777)
      Model1 1 1.135 (0.685-1.884) 1.402 (0.869-2.281) 1.205 (0.742-1.967) 1 1.213 (0.567-2.675) 1.033 (0.477-2.304) 0.488 (0.191-1.204)
      Model2 1 1.190 (0.714-1.988) 1.555 (0.955-2.555) 1.333 (0.815-2.197) 1 1.071 (0.488-2.413) 0.971 (0.439-2.207) 0.499 (0.192-1.256)
      Model3 1 1.147 (0.683-1.930) 1.436 (0.873-2.383) 1.165 (0.702-1.945) 1 1.286 (0.569-2.997) 1.190 (0.511-2.853) 0.559 (0.208-1.457)
    Polyunsaturated fatty acid
      Crude 1 1.540 (0.988-2.428) 1.279 (0.806-2.044) 0.605 (0.342-1.046) 1 0.939 (0.465-1.889) 0.698 (0.322-1.468) 0.698 (0.322-1.468)
      Model1 1 1.304 (0.822-2.091) 1.039 (0.645-1.686) 0.465 (0.259-0.815)* 1 0.689 (0.334-1.412) 0.463 (0.209-0.998) 0.476 (0.213-1.030)
      Model2 1 1.325 (0.831-2.135) 1.114 (0.688-1.817) 0.520 (0.288-0.920)* 1 0.705 (0.337-1.468) 0.535 (0.238-1.169) 0.526 (0.232-1.161)
      Model3 1 1.336 (0.832-2.171) 1.107 (0.678-1.822) 0.515 (0.283-0.921)* 1 0.913 (0.426-1.953) 0.800 (0.344-1.819) 0.824 (0.349-1.906)
    Phytosterols
      Crude 1 0.769 (0.508-1.157) 0.513 (0.321-0.804)* 0.319 (0.183-0.533)** 1 0.490 (0.218-1.034) 0.845 (0.432-1.632) 0.490 (0.218-1.034)
      Model1 1 0.859 (0.559-1.313) 0.601 (0.370-0.958)* 0.372 (0.210-0.633)** 1 0.444 (0.196-0.944)* 0.857 (0.435-1.671) 0.956 (0.401-2.173)
      Model2 1 0.890 (0.577-1.367) 0.644 (0.394-1.037) 0.416 (0.233-0.714)** 1 0.486 (0.212-1.049) 1.029 (0.511-2.058) 1.065 (0.438-2.477)
      Model3 1 0.955 (0.613-1.484) 0.674 (0.406-1.101) 0.420 (0.233-0.731)** 1 0.499 (0.214-1.096) 1.089 (0.531-2.221) 1.070 (0.430-2.550)
    Crude not adjusted for any potential covariates; Model 1adjusted for age, gender; Model 2 adjusted for age, gender, drinking status, smoking status; Model 3 adjusted for age, gender, drinking status, smoking status, educational status, income, work intensity. **P < 0.001; *P < 0.05; non letter or symbol, P > 0.05.
    下载: 导出CSV

    Table  5.   Association of different types of fatty acids and phytosterols with prevalence of NAFLD in participants during summer and winter

    Quartiles Summer (N = 2367) Winter (N = 1959)
    Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
    Fatty acids
      Crude 1 1.874 (1.154-3.108)* 1.449 (0.869-2.448) 1.324 (0.786-2.254) 1 0.998 (0.563-1.769) 0.749 (0.402-1.373) 0.708 (0.376-1.308)
      Model1 1 1.914 (1.170-3.194)* 1.463 (0.873-2.486) 1.284 (0.758-2.200) 1 0.706 (0.386-1.289) 0.444 (0.230-0.844)* 0.409 (0.209-0.785)*
      Model2 1 2.063 (1.252-3.470)* 1.641 (0.972-2.812) 1.468 (0.858-2.542) 1 0.714 (0.384-1.322) 0.470 (0.241-0.903)* 0.447 (0.225-0.871)*
      Model3 1 1.871 (1.118-3.195)* 1.383 (0.802-2.416) 1.159 (0.663-2.045) 1 0.954 (0.501-1.818) 0.630 (0.310-1.267) 0.569 (0.278-1.146)
    Saturated fatty acids
      Crude 1 1.170 (0.714-1.927) 0.930 (0.551-1.566) 1.594 (1.005-2.564) 1 0.773 (0.407-1.447) 1.043 (0.579-1.884) 0.952 (0.521-1.737)
      Model1 1 1.164 (0.706-1.928) 0.991 (0.584-1.677) 1.620 (1.015-2.622)* 1 0.532 (0.270-1.028) 0.627 (0.333-1.178) 0.545 (0.286-1.034)
      Model2 1 1.229 (0.741-2.048) 1.092 (0.639-1.862) 1.880 (1.166-3.075)* 1 0.466 (0.232-0.918)* 0.623 (0.325-1.191) 0.536 (0.276-1.034)
      Model3 1 1.122 (0.665-1.904) 0.893 (0.513-1.549) 1.405 (0.850-2.350) 1 0.598 (0.287-1.223) 0.698 (0.350-1.391) 0.571 (0.283-1.146)
    Monounsaturated fatty acids
      Crude 1 1.292 (0.785-2.145) 1.329 (0.811-2.201) 1.404 (0.862-2.316) 1 1.249 (0.694-2.272) 1.198 (0.662-2.189) 0.704 (0.352-1.374)
      Model1 1 1.442 (0.871-2.411) 1.430 (0.867-2.382) 1.449 (0.884-2.404) 1 0.928 (0.500-1.735) 0.732 (0.389-1.385) 0.409 (0.197-0.827)*
      Model2 1 1.504 (0.902-2.532) 1.595 (0.959-2.682) 1.591 (0.962-2.663) 1 0.860 (0.454-1.639) 0.691 (0.360-1.332) 0.412 (0.195-0.847)*
      Model3 1 1.379 (0.816-2.352) 1.308 (0.771-2.241) 1.213 (0.716-2.076) 1 1.126 (0.576-2.220) 0.906 (0.447-1.850) 0.475 (0.218-1.016)
    Polyunsaturated fatty acid
      Crude 1 1.024 (0.658-1.595) 0.998 (0.640-1.558) 0.386 (0.212-0.675)** 1 0.781 (0.441-1.367) 0.535 (0.281-0.986)* 0.640 (0.348-1.149)
      Model1 1 0.908 (0.576-1.431) 0.894 (0.567-1.409) 0.329 (0.179-0.580)** 1 0.532 (0.294-0.954)* 0.319 (0.163-0.605)* 0.393 (0.207-0.729)*
      Model2 1 0.921 (0.582-1.458) 0.954 (0.603-1.511) 0.360 (0.195-0.640)** 1 0.547 (0.297-0.992)* 0.354 (0.179-0.678)* 0.417 (0.217-0.784)*
      Model3 1 0.923 (0.573-1.487) 0.948 (0.588-1.530) 0.331 (0.176-0.599)** 1 0.722 (0.382-1.350) 0.539 (0.264-1.071) 0.658 (0.329-1.293)
    Phytosterols
      Crude 1 0.400 (0.258-0.607)** 0.225 (0.130-0.369)** 0.188 (0.105-0.318)** 1 0.679 (0.362-1.248) 1.038 (0.596-1.814) 0.601 (0.312-1.124)
      Model1 1 0.440 (0.282-0.673)** 0.259 (0.150-0.429)** 0.216 (0.119-0.369)** 1 0.609 (0.321-1.129) 1.089 (0.618-1.923) 1.340 (0.656-2.688)
      Model2 1 0.434 (0.277-0.666)** 0.267 (0.153-0.445)** 0.233 (0.128-0.401)** 1 0.667 (0.348-1.256) 1.265 (0.706-2.279) 1.443 (0.695-2.950)
      Model3 1 0.418 (0.262-0.656)** 0.247 (0.139-0.420)** 0.206 (0.111-0.360)** 1 0.700 (0.356-1.353) 1.343 (0.731-2.478) 1.271 (0.595-2.670)
    Crude not adjusted for any potential covariates; Model 1adjusted for age, gender; Model 2 adjusted for age, gender, drinking status, smoking status; Model 3 adjusted for age, gender, drinking status, smoking status, educational status, income, work intensity. **P < 0.001; *P < 0.05; non letter or symbol, P > 0.05.
    下载: 导出CSV
  • [1] Chen K, Shen Z, Gu W, et al. Prevalence of obesity and associated complications in China: A cross-sectional, real-world study in 15.8 million adults. Diabetes, Obesity and Metabolism, 2023; 25 (11): 3390-3399. doi: 10.1111/dom.15238
    [2] World Obesity Federation: World Obesity Atlas 2023. https://data.worldobesity.org/publications/?cat=19. Accessed on Dec 1, 2023.
    [3] The State Council Information Office of the People's Republic of China. Press briefing for the Report on Chinese Residents' Chronic Diseases and Nutrition 2020. http://www.gov.cn/xinwen/2020-12/24/content_5572983.htm. Accessed on Dec 1, 2023
    [4] Epping-Jordan J E, Galea G, Tukuitonga C, et al. Preventing chronic diseases: taking stepwise action. Lancet, 2005; 366 (9497): 1667-1671. doi: 10.1016/S0140-6736(05)67342-4
    [5] Di Renzo L, Gualtieri P, Romano L, et al. Role of personalized nutrition in chronic-degenerative diseases. Nutrients, 2019; 11 (8): 1707. doi: 10.3390/nu11081707
    [6] Noce A, Romani A, Bernini R. Dietary intake and chronic disease prevention. Nutrients, 2021; 13 (4): 1358. doi: 10.3390/nu13041358
    [7] Stelmach-Mardas M, Kleiser C, Uzhova I, et al. Seasonality of food groups and total energy intake: a systematic review and meta-analysis. Eur J Clin Nutr, 2016; 70 (6): 700-708. doi: 10.1038/ejcn.2015.224
    [8] Zang J, Yu H, Zhu Z, et al. Does the dietary pattern of Shanghai residents change across seasons and area of residence: assessing dietary quality using the Chinese Diet Balance Index (DBI). Nutrients, 2017; 9 (3): 251. doi: 10.3390/nu9030251
    [9] Tanaka N, Okuda T, Shinohara H, et al. Relationship between seasonal changes in food intake and energy metabolism, physical activity, and body composition in young Japanese women. Nutrients, 2022; 14 (3): 506. doi: 10.3390/nu14030506
    [10] Capita R, Alonso-Calleja C. Differences in reported winter and summer dietary intakes in young adults in Spain. Int J Food Sci Nutr, 2009; 56 (6): 431-443.
    [11] Jahns L, Johnson L K, Scheett A J, et al. Measures of diet quality across calendar and winter holiday seasons among midlife women: a 1-year longitudinal study using the automated self-administered 24-hour recall. J Acad Nutr Diet, 2016; 116 (12): 1961-1969. doi: 10.1016/j.jand.2016.07.013
    [12] Bernstein S, Zambell K, Amar M J, et al. Dietary intake patterns are consistent across seasons in a cohort of healthy adults in a metropolitan population. J Acad Nutr Diet, 2016; 116 (1): 38-45. doi: 10.1016/j.jand.2015.08.008
    [13] Zhou J, Cai L, Ni S, et al. Associations of dietary PUFA with dyslipidaemia among the US adults: the findings from National Health and Nutrition Examination Survey (NHANES) 2009–2016. Br J Nutr, 2021; 127 (9): 1386-1394.
    [14] Sanders T A B. Protective effects of dietary PUFA against chronic disease: evidence from epidemiological studies and intervention trials. Pro Nutr Soc, 2013; 73 (1): 73-79.
    [15] Gupta V. Oily fish, coffee and walnuts: dietary treatment for nonalcoholic fatty liver disease. World J Gastroenterol, 2015; 21 (37): 10621-10635. doi: 10.3748/wjg.v21.i37.10621
    [16] Ji X N, Huang M, Yao S H, et al. Refined grains intake in high fat, high protein, low carbohydrate and low energy levels subgroups and higher likelihood of abdominal obesity in Chinese population. Int J Food Scie Nutr, 2020; 71 (8): 979-990. doi: 10.1080/09637486.2020.1746956
    [17] Willett W C, Howe G R, Kushi L H. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr, 1997; 65 (4 Suppl): 1220S-1228S; discussion 1229S-1231S.
    [18] De Souza R, Schincaglia R, Pimentel G, et al. Nuts and human health outcomes: a systematic review. Nutrients, 2017; 9 (12): 1311. doi: 10.3390/nu9121311
    [19] Givens I. Animal nutrition and lipids in animal products and their contribution to human intake and health. Nutrients, 2009; 1 (1): 71-82. doi: 10.3390/nu1010071
    [20] Kliem K E, Shingfield K J, Livingstone K M, et al. Seasonal variation in the fatty acid composition of milk available at retail in the United Kingdom and implications for dietary intake. Food Chem, 2013; 141 (1): 274-281. doi: 10.1016/j.foodchem.2013.02.116
    [21] Ooi E M, Watts G F, Ng T W, et al. Effect of dietary fatty acids on human lipoprotein metabolism: a comprehensive update. Nutrients, 2015; 7 (6): 4416-4425. doi: 10.3390/nu7064416
    [22] Frasinariu O, Serban R, Trandafir L M, et al. The role of phytosterols in nonalcoholic fatty liver disease. Nutrients, 2022; 14 (11): 2187. doi: 10.3390/nu14112187
    [23] Gylling H, Simonen P. Phytosterols, phytostanols, and lipoprotein metabolism. Nutrients, 2015; 7 (9): 7965-7977. doi: 10.3390/nu7095374
    [24] Song L, Qu D, Zhang Q, et al. Phytosterol esters attenuate hepatic steatosis in rats with non-alcoholic fatty liver disease rats fed a high-fat diet. Sci Rep, 2017; 7: 46884. doi: 10.1038/srep46884
    [25] Feng S, Dai Z, Liu AB, et al. Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids, 2018; 1863 (10): 1274-1284.
    [26] Ding X, Xu Y, Nie P, et al. Changes in the serum metabolomic profiles of subjects with NAFLD in response to n-3 PUFAs and phytosterol ester: a double-blind randomized controlled trial. Food & Function, 2022; 13 (9): 5189-5201.
  • 加载中
表(5)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  62
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-21
  • 录用日期:  2024-05-06

目录

    /

    返回文章
    返回