留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

PLA2G2D and CHIT1: Potential biomarkers for immune infiltration and prognosis in cervical squamous cell carcinoma

Liangliang Jiang Qiushuang Qiao Jing Wang

Liangliang Jiang, Qiushuang Qiao, Jing Wang. PLA2G2D and CHIT1: Potential biomarkers for immune infiltration and prognosis in cervical squamous cell carcinoma[J]. Frigid Zone Medicine, 2024, 4(2): 110-119. doi: 10.1515/fzm-2024-0012
Citation: Liangliang Jiang, Qiushuang Qiao, Jing Wang. PLA2G2D and CHIT1: Potential biomarkers for immune infiltration and prognosis in cervical squamous cell carcinoma[J]. Frigid Zone Medicine, 2024, 4(2): 110-119. doi: 10.1515/fzm-2024-0012

PLA2G2D and CHIT1: Potential biomarkers for immune infiltration and prognosis in cervical squamous cell carcinoma

doi: 10.1515/fzm-2024-0012
Funds: 

Haiyan Foundation Youth Project JJQN2022-12

More Information
  • Figure  1.  Survival curve of immune cell score

    Figure  2.  WGCNA analysis

    (A) WGCNA determines optimal threshold; (B) WGCNA hierarchical clustering; (C) Correlation analysis map between gene module and immune cell score.

    Figure  3.  LASSO regression analysis

    (A) The larger the lambda is, the closer the regression coefficient tends to zero; (B) The smaller the likelihood deviation is, the better the model fittingis; (C) Survival curve of immune-related gene marker scores.

    Figure  4.  Survival association analysis of immune-related gene markers

    (A) Multivariate cox proportional risk model analysis; (B) Nomogram of survival prediction of cervical squamous cell carcinoma (CESC) patients; (C) ROC curve analysis.

    Figure  5.  The overall survival of the gene markers in stage Ⅱ and stage Ⅲ cervical squamous cell carcinoma (CESC) patients

    Figure  6.  Immune score differences between the high immune-related gene marker score group and the low immune-related gene marker score group

    (A) Difference of immune score from ESTIMATE data resource; (B) Difference of immune score from TIDE data resource.

    Figure  7.  Analysis of biological function differences between the high immune-related gene marker score group and the low immune-related gene marker score group

    (A) Biologic process function of differentially expressed genes; (B) Cellular components function of differentially expressed genes; (C) Molecular functions of differentially expressed genes; (D) KEGG pathway enrichment analysis of differentially expressed genes.

    Figure  8.  The expression of PLA2G2D and CHIT1 between cervical squamous cell carcinoma (CESC) patients and normal samples

    Figure  9.  Expression changes of PLA2G2D and CHIT1 in tumor tissues of cervical squamous cell carcinoma (CESC) patients and normal controls

    (A) Negative expression of PLA2G2D in normal cervical epithelium; (B-C) Low and high expression of PLA2G2D in cervical squamous cell carcinoma; (D-E) Low and high expression of PLA2G2D in cervical adenocarcinoma; (F) Negative expression of CHIT1 in normal cervical epithelium; (G-H) Low and high expression of CHIT1 in cervical squamous cell carcinoma; (I-J) Low and high expression of CHIT1 in cervical adenocarcinoma (100x); (K-L) Immunohistochemical results of expression of PLA2G2D and CHIT1 in tumor tissues of CESC patients and normal controls.

    Figure  10.  The expression levels of CHIT1 and PLA2G2D genes in the cervical squamous cell carcinoma (CESC) and normal control group were detected by Real-time PCR

  • [1] Cohen P, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet, 2019; 393(10167): 169-182. doi: 10.1016/S0140-6736(18)32470-X
    [2] Mileshkin L, Moore K, Barnes E, et al. Adjuvant chemotherapy following chemoradiotherapy as primary treatment for locally advanced cervical cancer versus chemoradiotherapy alone: an international, openlabel, randomised, phase 3 trial. Lancet Oncol, 2023; 24(5): 468-482. doi: 10.1016/S1470-2045(23)00147-X
    [3] Xiao M, Xie L, Cao G, et al. CD4 T-cell epitope-based heterologous prime-boost vaccination potentiates anti-tumor immunity and PD-1/PD-L1 immunotherapy. J Immunother Cancer, 2022; 10(5): e004022. doi: 10.1136/jitc-2021-004022
    [4] Oh D, Fong L. Cytotoxic CD4 T cells in cancer: Expanding the immune effector toolbox. Immunity, 2021; 54(12): 2701-2711. doi: 10.1016/j.immuni.2021.11.015
    [5] Philip M, Schietinger A. CD8 T cell differentiation and dysfunction in cancer. Nat Rev Immunol, 2022; 22(4): 209-223. doi: 10.1038/s41577-021-00574-3
    [6] Sharonov G, Serebrovskaya E, Yuzhakova D, et al. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol, 2020; 20(5): 294-307. doi: 10.1038/s41577-019-0257-x
    [7] Huntington N, Cursons J, Rautela J. The cancer-natural killer cell immunity cycle. Nat Rev Cancer, 2020; 20(8): 437-454. doi: 10.1038/s41568-020-0272-z
    [8] Kurmyshkina O, Kovchur P, Schegoleva L, et al. T- and NK-cell populations with regulatory phenotype and markers of apoptosis in circulating lymphocytes of patients with CIN3 or microcarcinoma of the cervix: evidence for potential mechanisms of immune suppression. Infect Agent Cancer, 2017; 12: 56.
    [9] Zhang Y, Yu M, Jing Y, et al. Baseline immunity and impact of chemotherapy on immune microenvironment in cervical cancer. Br J Cancer, 2021; 124(2): 414-424. doi: 10.1038/s41416-020-01123-w
    [10] Zhang L, Zhang H, Huang Y, et al. Expression of immune cell markers and tumor markers in patients with cervical cancer. Int J Gynecol Cancer, 2020; 30(7): 969-974. doi: 10.1136/ijgc-2020-001254
    [11] Sato H, Taketomi Y, Miki Y, et al. Secreted phospholipase PLA2G2D contributes to metabolic health by mobilizing ω3 polyunsaturated fatty acids in WAT. Cell Rep, 2020; 31(5): 107579. doi: 10.1016/j.celrep.2020.107579
    [12] Murakami M, Yamamoto K, Miki Y, et al. The roles of the secreted phospholipase A gene family in immunology. Adv Immunol, 2016; 132: 91-134. doi: 10.1016/bs.ai.2016.05.001
    [13] Miki Y, Yamamoto K, Taketomi Y, et al. Lymphoid tissue phospholipase A2 group ⅡD resolves contact hypersensitivity by driving antiinflammatory lipid mediators. J Exp Med, 2013; 210(6): 1217-1234. doi: 10.1084/jem.20121887
    [14] Miki Y, Kidoguchi Y, Sato M, et al. Dual roles of group ⅡD phospholipase A2 in inflammation and cancer. J Biol Chem, 2016; 291(30): 15588-155601. doi: 10.1074/jbc.M116.734624
    [15] Liu H, Xu R, Gao C, et al. Metabolic molecule PLA2G2D is a potential prognostic biomarker correlating with immune cell infiltration and the expression of immune checkpoint genes in cervical squamous cell carcinoma. Front Oncol, 2021; 11: 755668. doi: 10.3389/fonc.2021.755668
    [16] Di Francesco A, Verrecchia E, Manna S, et al. The chitinases as biomarkers in immune-mediate diseases. Clin Chem Lab Med, 2022; 61(8): 1363-1381. doi: 10.1515/cclm-2022-0767
    [17] Chang D, Sharma L, Dela Cruz C. Chitotriosidase: a marker and modulator of lung disease. Eur Respir Rev, 2020; 29(156): 190143. doi: 10.1183/16000617.0143-2019
    [18] Lee C, Herzog E, Ahangari F, et al. Chitinase 1 is a biomarker for and therapeutic target in scleroderma-associated interstitial lung disease that augments TGF-β1 signaling. J Immunol. 2012; 189(5): 2635-2644. doi: 10.4049/jimmunol.1201115
    [19] Koralewski R, Dymek B, Mazur M, et al. Discovery of, a First-in-Class chitinase inhibitor as potential new therapeutics for idiopathic pulmonary fibrosis. J Med Chem, 2020; 63(24): 15527-15540. doi: 10.1021/acs.jmedchem.0c01179
    [20] Yu J, Zhang W, Ding D, et al. Bioinformatics analysis combined with experiments predicts PUDP as a potential prognostic biomarker for hepatocellular carcinoma through its interaction with tumor microenvironment. Front Oncol, 2022; 12: 830174. doi: 10.3389/fonc.2022.830174
    [21] Wang Q, Xu Y. Comprehensive analysis of cuproptosis-related lncRNAs model in tumor immune microenvironment and prognostic value of cervical cancer. Front Pharmacol, 2022; 13: 1065701. doi: 10.3389/fphar.2022.1065701
    [22] Wen H, Chen H, Xie L, et al. Macrophage-related molecular subtypes in lung adenocarcinoma identify novel tumor microenvironment with prognostic and therapeutic implications. Front Genet, 2022; 13: 1012164. doi: 10.3389/fgene.2022.1012164
    [23] Zhou N, Kong D, Lin Q, et al. Unfolded protein response signature unveils novel insights into breast cancer prognosis and tumor microenvironment. Cancer Genet, 2023; 276-277: 17-29. doi: 10.1016/j.cancergen.2023.06.001
    [24] Garlanda C, Mantovani A. Interleukin-1 in tumor progression, therapy, and prevention. Cancer Cell, 2021; 39(8): 1023-1027. doi: 10.1016/j.ccell.2021.04.011
    [25] Verstockt B, Salas A, Sands B, et al. IL-12 and IL-23 pathway inhibition in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol, 2023; 20(7): 433-446. doi: 10.1038/s41575-023-00768-1
    [26] Lewis N, Sia C, Kirwin K, et al. Exosome surface display of IL12 results in tumor-retained pharmacology with superior potency and limited systemic exposure compared with recombinant IL12. Mol Cancer Ther, 2021; 20(3): 523-534. doi: 10.1158/1535-7163.MCT-20-0484
    [27] Jia Z, Ragoonanan D, Mahadeo K, et al. IL12 immune therapy clinical trial review: novel strategies for avoiding CRS-associated cytokines. Front Immunol, 2022; 13: 952231. doi: 10.3389/fimmu.2022.952231
    [28] Goenka A, Khan F, Verma B, et al. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond), 2023; 43(5): 525-561. doi: 10.1002/cac2.12416
    [29] Bule P, Aguiar S, Aires-Da-Silva F, et al. Chemokine-Directed tumor microenvironment modulation in cancer immunotherapy. Int J Mol Sci, 2021; 22(18): 9804. doi: 10.3390/ijms22189804
    [30] Ren X, Chen C, Luo Y, et al. lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer. Mol Cancer, 2020; 19(1): 35. doi: 10.1186/s12943-020-01153-1
  • 加载中
图(10)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  95
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-04
  • 录用日期:  2024-02-06
  • 网络出版日期:  2024-08-07

目录

    /

    返回文章
    返回